
Fixed-Income Toolbox™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Income Toolbox™ User’s Guide

© COPYRIGHT 2003–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 2003 Online only New for Version 1.0 (Release 13)
November 2003 First printing Unchanged
June 2004 Online only Revised for Version 1.0.1 (Release 14)
August 2004 Online only Revised for Version 1.1 (Release 14+)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.2 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 1.3 (Release 2007a)
September 2007 Online only Revised for Version 1.4 (Release 2007b)
March 2008 Online only Revised for Version 1.5 (Release 2008a)
October 2008 Online only Revised for Version 1.6 (Release 2008b)
March 2009 Online only Revised for Version 1.7 (Release 2009a)
September 2009 Online only Revised for Version 1.8 (Release 2009b)
March 2010 Online only Revised for Version 1.9 (Release 2010a)
September 2010 Online only Revised for Version 2.0 (Release 2010b)
April 2011 Online only Revised for Version 2.1 (Release 2011a)
September 2011 Online only Revised for Version 2.2 (Release 2011b)

Contents

Getting Started

1
Product Overview . 1-2
Introduction . 1-2
Key Features . 1-2
Expected Background . 1-3

Mortgage-Backed Securities

2
What Are Mortgage-Backed Securities? 2-2

Using Fixed-Rate Mortgage Pool Functions 2-3
Introduction . 2-3
Inputs to Functions . 2-4
Generating Prepayment Vectors . 2-4
Mortgage Prepayments . 2-6
Risk Measurement . 2-8
Mortgage Pool Valuation . 2-9
Computing Option-Adjusted Spread 2-10
Prepayments with Fewer Than 360 Months Remaining . . 2-13
Pools with Different Numbers of Coupons Remaining 2-15

Debt Instruments

3
Agency Option-Adjusted Spreads 3-2
Computing the Agency OAS for Bonds 3-3

Treasury Bills Defined . 3-7

v

Computing Treasury Bill Price and Yield 3-8
Introduction . 3-8
Treasury Bill Repurchase Agreements 3-8
Treasury Bill Yields . 3-10

Using Zero-Coupon Bonds . 3-12
Introduction . 3-12
Measuring Zero-Coupon Bond Function Quality 3-12
Pricing Treasury Notes . 3-13
Pricing Corporate Bonds . 3-15

Stepped-Coupon Bonds . 3-17
Introduction . 3-17
Cash Flows from Stepped-Coupon Bonds 3-17
Price and Yield of Stepped-Coupon Bonds 3-19

Term Structure Calculations . 3-20
Introduction . 3-20
Computing Spot and Forward Curves 3-20
Computing Spreads . 3-22

Derivative Securities

4
Interest Rate Swaps . 4-2
Swap Pricing Assumptions . 4-2
Swap Pricing Example . 4-3
Portfolio Hedging . 4-8

Convertible Bond Valuation . 4-10

Bond Futures . 4-12
Supported Bond Futures . 4-12
Example Analysis of Bond Futures 4-14
Managing Interest-Rate Risk with Bond Futures 4-16

vi Contents

Credit Derivatives

5
Credit Default Swap (CDS) . 5-2
Bootstrapping a Default Probability Curve 5-2
Finding the Breakeven Spread for a New CDS Contract . . 5-5
Valuing an Existing CDS Contract 5-8
Converting from Running to Upfront and Vice Versa 5-10
Bootstrapping from Inverted Market Curves 5-13

Credit Default Swap Option . 5-17

Interest-Rate Curve Objects

6
Introduction to Interest-Rate Curve Objects 6-2
Class Structure . 6-2
Supported Workflow Model Using Interest-Rate Curve
Objects . 6-3

Creating Interest-Rate Curve Objects 6-4

Creating an IRDataCurve Object . 6-6
Using the IRDataCurve Constructor with Dates and
Data . 6-6

Using IRDataCurve bootstrap Method for Bootstrapping
Based on Market Instruments . 6-7

Creating an IRFunctionCurve Object 6-13
Using a Function Handle to Fit an IRFunctionCurve
Object . 6-13

Using the Nelson-Siegel Method to Fit an IRFunctionCurve
Object . 6-14

Using the Svensson Method to Fit an IRFunctionCurve
Object . 6-16

Using the Smoothing Spline Method to Fit an
IRFunctionCurve Object . 6-18

vii

Using the fitFunction Method to Create a Custom Fitting
Function for an IRFunctionCurve Object 6-21

Converting an IRDataCurve or IRFunctionCurve
Object . 6-25
Introduction . 6-25
Using the toRateSpec Method . 6-25
Using Vector of Dates and Data Methods 6-26

Function Reference

7
Bond Futures . 7-2

Certificates of Deposit . 7-2

Convertible Bonds . 7-3

Credit Default Swaps . 7-4

Derivative Securities . 7-4

Interest-Rate Curve Objects . 7-5

Mortgage-Backed Securities . 7-7

Option-Adjusted Spread Computations 7-8

Stepped-Coupon Bonds . 7-9

Treasury Bills . 7-10

Zero-Coupon Instruments . 7-11

viii Contents

Functions — Alphabetical List

8

Class Reference

A
@IRBootstrapOptions . A-2
Hierarchy . A-2
Constructor . A-2
Public Read-Only Properties . A-2
Methods . A-3

@IRCurve . A-4
Hierarchy . A-4
Description . A-4
Constructor . A-4
Public Read-Only Properties . A-4
Methods . A-6

@IRDataCurve . A-7
Hierarchy . A-7
Description . A-7
Constructor . A-7
Public Read-Only Properties . A-8
Methods . A-9

@IRFitOptions . A-10
Hierarchy . A-10
Description . A-10
Constructor . A-10
Public Read-Only Properties . A-11
Methods . A-11

@IRFunctionCurve . A-12
Hierarchy . A-12
Description . A-12
Constructor . A-12
Public Read-Only Properties . A-13

ix

Methods . A-14

Bibliography

B
Fitting Interest-Rate Curve Functions B-2

Bootstrapping a Swap Curve . B-3

Bond Futures . B-4

Credit Derivatives . B-5

Examples

C
Agency Option Adjusted Spreads . C-2

Treasury Bills . C-2

Using Zero-Coupon Bonds . C-2

Stepped-Coupon Bonds . C-2

Pricing and Hedging . C-2

Bond Futures . C-2

Credit Default Swaps . C-3

x Contents

Glossary

Index

xi

xii Contents

1

Getting Started

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2

“Key Features” on page 1-2

“Expected Background” on page 1-3

Introduction
Fixed-Income Toolbox™ software provides functions for fixed-income modeling
and analysis. The toolbox includes tools for fitting yield curves to market
data using parametric fitting models and bootstrapping. You can calculate
the price, rates, and sensitivities for interest rate swaps. You can also price
and value other derivatives, including credit default swaps, bond futures,
and convertible bonds. Fixed-Income Toolbox software also includes tools for
determining the price, yield, and cash flow for many types of fixed-income
securities, including mortgage-backed securities, corporate bonds, treasury
bonds, municipal bonds, certificates of deposit, and treasury bills.

Key Features
• Yield curve fitting with bootstrapping and parametric fitting models

• Price, rate, and sensitivity calculation for interest rate swaps

• Price and value calculation for credit default swaps

• Price, yield, discount rate, and cash-flow schedule calculation for
debt instruments, including treasury bills, zero-coupon bonds, and
stepped-coupon bonds

• Price and option-adjusted spread calculation for bonds

• Price and rate calculation for convertible bonds, bond futures, and
European call and put options

• Price and yield calculation for generic fixed-rate mortgage pools and
balloon mortgages

1-2

Product Overview

Expected Background
In general, this guide assumes experience working with fixed-income
instruments and some familiarity with the underlying models.

Your title is likely one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Financial engineer

• Trader

• Student, professor, or other academic

Your background, education, training, and responsibilities likely match some
aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability theory, statistics, and algebra

• Understand linear or matrix algebra and calculus

• Perhaps new to MATLAB® software

1-3

1 Getting Started

1-4

2

Mortgage-Backed Securities

• “What Are Mortgage-Backed Securities?” on page 2-2

• “Using Fixed-Rate Mortgage Pool Functions” on page 2-3

2 Mortgage-Backed Securities

What Are Mortgage-Backed Securities?
Mortgage-backed securities (MBSs) are a type of investment that represents
ownership in a group of mortgages. Principal and interest from the individual
mortgages are used to pay principal and interest on the MBS.

Ownership in a group of mortgages is typically represented by a pass-through
certificate (PC). Most pass-through certificates are issued by the Government
National Mortgage Agency, a branch of the United States government,
or by one of two private corporations: Fannie Mae or Freddie Mac. With
these certificates, homeowners’ payments pass from the originating bank
through the issuing agency to holders of the certificates. These agencies also
frequently guarantee that the certificate holder receives timely payment of
principal and interest from the PCs.

2-2

Using Fixed-Rate Mortgage Pool Functions

Using Fixed-Rate Mortgage Pool Functions

In this section...

“Introduction” on page 2-3

“Inputs to Functions” on page 2-4

“Generating Prepayment Vectors” on page 2-4

“Mortgage Prepayments” on page 2-6

“Risk Measurement” on page 2-8

“Mortgage Pool Valuation” on page 2-9

“Computing Option-Adjusted Spread” on page 2-10

“Prepayments with Fewer Than 360 Months Remaining” on page 2-13

“Pools with Different Numbers of Coupons Remaining” on page 2-15

Introduction
Fixed-Income Toolbox software supports calculations involved with generic
fixed-rate mortgage pools and balloon mortgages. Pass-through certificates
typically have embedded call options in the form of prepayment. Prepayment
is an excess payment applied to the principal of a PC. These accelerated
payments reduce the effective life of a PC.

The toolbox comes with a standard Bond Market Association (PSA)
prepayment model and can generate multiples of standard prepayment
speeds. The Public Securities Association provides a set of uniform practices
for calculating the characteristics of mortgage-backed securities when there is
an assumed prepayment function.

You can obtain more information about these uniform practices on the PSA
Web site (http://www.bondmarkets.com).

Alternatively, aside from the standard PSA implementation in this toolbox,
you can supply your own projected prepayment vectors. At this time, however,
custom prepayment functionality that incorporates pool-specific information
and interest rate forecasts are not available in this toolbox. If you plan to use

2-3

http://www.bondmarkets.com

2 Mortgage-Backed Securities

custom prepayment vectors in your calculations, you presumably already
own such a suite in MATLAB.

Inputs to Functions
Because of the generic, all-purpose nature of the toolbox pass-through
functions, you can fine-tune them to conform to a particular mortgage. Most
functions require at least this set of inputs:

• Gross coupon rate

• Settlement date

• Issue (effective) date

• Maturity date

Typical optional inputs include standard prepayment speed (or customized
vector), net coupon rate (if different from gross coupon rate), and payment
delay in number of days.

All calculations are based on expected payment dates and actual cash flow to
the investor. For example, when GrossRate and CouponRate differ as inputs
to mbsdurp, the function returns a modified duration based on CouponRate.
(A notable exception is mbspassthrough, which returns interest quantities
based on the GrossRate.)

Generating Prepayment Vectors
You can generate PSA multiple prepayment vectors quickly. To generate
prepayment vectors of 100 and 200 PSA, type

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

This function computes two prepayment values: conditional prepayment
rate (CPR) and single monthly mortality (SMM) rate. CPR is the percentage
of outstanding principal prepaid in 1 year. SMM is the percentage of
outstanding principal prepaid in 1 month. In other words, CPR is an annual
version of SMM.

2-4

Using Fixed-Rate Mortgage Pool Functions

Since the entire 360-by-2 array is too long to show in this document, observe
the SMM (100 and 200 PSA) plots, spaced one month apart, instead.

Prepayment assumptions form the basis upon which far more comprehensive
MBS calculations are based. As an illustration observe the following example,
which shows the use of the function mbscfamounts to generate cash flows and
timings based on a set of standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts
unamortized). The first two pools "balloon out" in 60 months, and the third is
regularly amortized to the end. The prepayment speeds are assumed to be
100, 200, and 200 PSA, respectively.

Settle = [datenum('1-Feb-2000');
datenum('1-Feb-2000');
datenum('1-Feb-2000')];

Maturity = [datenum('1-Feb-2030')];

IssueDate = datenum('1-Feb-2000');

2-5

2 Mortgage-Backed Securities

GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, [], PrepayMatrix);

The fourth output argument, Factors, indicates the fraction of the balance
still outstanding at the beginning of each month. A snapshot of this argument
in the MATLAB Variable Editor illustrates the 60-month life of the first two
of the mortgages with balloon payments and the continuation of the third
mortgage until the end (360 months).

You can readily see that mbscfamounts is the building block of most fixed rate
and balloon pool cash flows.

Mortgage Prepayments
Prepayment is beneficial to the pass-through owner when a mortgage pool
has been purchased at discount. The next example compares mortgage
yields (compounded monthly) versus the purchase clean price with constant
prepayment speed. The example illustrates that when you have purchased

2-6

Using Fixed-Rate Mortgage Pool Functions

a pool at a discount, prepayment generates a higher yield with decreasing
purchase price.

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Compute the mortgage and bond-equivalent yields.

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.1018
0.0918
0.0828

BEMBSYield =

0.1040
0.0936
0.0842

If for this same pool of mortgages, there was no prepayment (Speed = 0),
the yields would decline to

MYield =

0.0926
0.0861
0.0802

BEMBSYield =

0.0944

2-7

2 Mortgage-Backed Securities

0.0877
0.0815

Likewise, if the rate of prepayment doubled (Speed = 200), the yields would
increase to

MYield =

0.1124
0.0984
0.0858

BEMBSYield =

0.1151
0.1004
0.0873

For the same prepayment vector, deeper discount pools earn higher yields.
For more information, see mbsprice and mbsyield.

Risk Measurement
Fixed-Income Toolbox software provides the most basic risk measures of
a pool portfolio:

• Modified duration

• Convexity

• Average life of pool

Consider the following example, which calculates the Macaulay and modified
durations given the price of a mortgage pool.

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;

2-8

Using Fixed-Rate Mortgage Pool Functions

Delay = 14;
Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.1341
6.3882
6.6339

ModDuration =

5.8863
6.1552
6.4159

Using Fixed-Income Toolbox functions, you can obtain modified duration
and convexity from either price or yield, as long as you specify a prepayment
vector or an assumed prepayment speed. The toolbox risk-measurement
functions (mbsdurp, mbsdury, mbsconvp, mbsconvy, and mbswal) adhere to the
guidelines listed in the PSA Uniform Practices manual.

Mortgage Pool Valuation
For accurate valuation of a mortgage pool, you must generate interest rate
paths and use them with mortgage pool characteristics to properly value
the pool. A widely used methodology is the option-adjusted spread (OAS).
OAS measures the yield spread that is not directly attributable to the
characteristics of a fixed-income investment.

Calculating OAS
Prepayment alters the cash flows of an otherwise regularly amortizing
mortgage pool. A comprehensive option-adjusted spread calculation
typically begins with the generation of a set of paths of spot rates to predict
prepayment. A path is collection of i spot-rate paths, with corresponding
j cash flows on each of those paths.

2-9

2 Mortgage-Backed Securities

The effect of the OAS on pool pricing is shown mathematically in the following
equation, where K is the option-adjusted spread.

PoolPrice
NumberofPaths

CF

zerorates K
ij

ij
ij

ij

T
j

CF

i

Nu
= ×

+ +
∑1

1()

mmberofPaths

∑

Calculating Effective Duration
Alternatively, if you are more interested in the sensitivity of a mortgage pool
to interest rate changes, use effective duration, which is a more appropriate
measure. Effective duration is defined mathematically with the following
equation.

Effective Duration
P y y P y y

P y y
= + − −() ()

()
Δ Δ

Δ2

Calculating Market Price
The toolbox has all the components required to calculate OAS and effective
duration if you supply prepayment vectors or assumptions. For OAS, given a
prepayment vector, you can generate a set of cash flows with mbscfamounts.
Discounting these cash flows with the reference curve and then adding OAS
produces the market price. See “Computing Option-Adjusted Spread” on page
2-10 for a discussion on the computation of option-adjusted spread.

Effective duration is a more difficult issue. While modified duration changes
the discounting process (by changing the yield used to discount cash flows),
effective duration must account for the change in cash flow because of the
change in yield. A possible solution is to recompute prices using mbsprice for
a small change in yield, in both the upwards and downwards directions. In
this case, you must recompute the prepayment input. Internally, this alters
the cash flows of the mortgage pool. Assuming that the OAS stays constant in
all yield environments, you can apply a set of discounting factors to the cash
flows in up and down yield environments to find the effective duration.

Computing Option-Adjusted Spread
The option-adjusted spread (OAS) is an amount of extra interest added above
(or below if negative) the reference zero curve. To compute the OAS, you must

2-10

Using Fixed-Rate Mortgage Pool Functions

provide the zero curve as an extra input. You can specify the zero curve in
any intervals and with any compounding method. (To minimize any error
due to interpolation, keep the intervals as regular and frequent as possible.)
You must supply a prepayment vector or specify a speed corresponding to
a standard PSA prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its
bond yields and bootstrap them from the shortest maturity onwards. You can
do this with Financial Toolbox™ functions zbtprice and zbtyield.

The following example shows how to calculate an appropriate zero curve
followed by computation of the pool’s OAS. This example calculates the OAS
of a 30-year fixed rate mortgage with about a 28-year weighted average
maturity left, given an assumption of 0, 50, and 100 PSA prepayment speeds.

Create curve for zerorates.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;

datenum('02/20/2003') 0 100 0 2 1;

datenum('07/31/2004') 0.03 100 2 3 1;

datenum('08/15/2007') 0.035 100 2 3 1;

datenum('08/15/2012') 0.04875 100 2 3 1;

datenum('02/15/2031') 0.05375 100 2 3 1];

Yields = [0.0162;

0.0163;

0.0211;

0.0328;

0.0420;

0.0501];

Since the above is Treasury data and not selected agency data, a term
structure of spread is assumed. In this example, the spread declines
proportionally from a maximum of 250 basis points at the shortest maturity.

Yields = Yields + 0.025 * (1./[1:6]');

Get parameters from Bonds matrix.

Settle = datenum('20-Aug-2002');

Maturity = Bonds(:,1);

2-11

2 Mortgage-Backed Securities

CouponRate = Bonds(:,2);

Face = Bonds(:,3);

Period = Bonds(:,4);

Basis = Bonds(:,5);

EndMonthRule = Bonds(:,6);

[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...

Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...

Face);

Use zbtprice to solve for zero rates.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding];

Use output from zbtprice to calculate the OAS.

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

OAS =

26.0502
28.6348
31.2222

This example shows that one cash flow set is being discounted and solved for
its OAS, as contrasted with the NumberOfPaths set of cash flows as shown

2-12

Using Fixed-Rate Mortgage Pool Functions

in “Mortgage Pool Valuation” on page 2-9. Averaging the sets of cash flows
resulting from all simulations into one average cash flow vector and solving
for the OAS, discounts the averaged cash flows to have a present value of
today’s (average) price.

While this example uses the mortgage pool price (mbsprice2oas) to determine
the OAS, you can also use yield to resolve it (mbsyield2oas). Also, there are
reverse OAS functions that return prices and yields given OAS (mbsoas2price
and mbsoas2yield).

The example also restates earlier examples that show discount securities
benefit from higher level of prepayment, keeping everything else unchanged.
The relation is reversed for premium securities.

Prepayments with Fewer Than 360 Months
Remaining
When fewer than 360 months remain in the pool, the applicable PSA
prepayment vector is "seasoned" by the pool’s age. (Elements in the
360-element prepayment vector that represent past payments are skipped.
For example, on a 30-year mortgage that is 10 months old, only the final
350 prepayments are applied.)

Assume, for example, that you have two 30-year loans, one new and another
10 months old. Both have the same PSA speed of 100 and prepay using the
vectors plotted below.

2-13

2 Mortgage-Backed Securities

Still within the scope of relative valuation, you could also solve for the
percentage of the standard PSA prepayment vector given the pool’s arbitrary,
user-supplied prepayment vector, such that the PSA speed gives the same
Macaulay duration as the user-supplied prepayment vector.

If you supply a custom prepayment vector, you must account for the number
of months remaining.

Price = 101;
Settle = datenum('1-Jan-2001');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate = 0.075;
Delay = 14;

ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

2-14

Using Fixed-Rate Mortgage Pool Functions

ImpliedSpeed =

104.2543

Examine the prepayment input. The remaining 29 years require 348 monthly
elements in the prepayment vector. Suppose then, keeping everything the
same, you change Settle to February 14, 2003.

Settle = datenum('14-Feb-2003');

You can use cpncount to count all incoming coupons received after Settle
by invoking

NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ...
IssueDate)

NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the 30/360
basis, and IssueDate defines aging and determination-of-holder date.
Thus, you must supply a 323-element vector to account for a prepayment
corresponding to each monthly payment.

Pools with Different Numbers of Coupons Remaining
Suppose one pool has two remaining coupons, and the other has three.
MATLAB software expects the prepayment matrix to be in the following
format:

V11 V21
V12 V22
NaN V23

Vij denotes the single monthly mortality (SMM) rate for pool i during the jth
coupon period since Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB
cannot concatenate vectors of different lengths into a matrix. Also, it can

2-15

2 Mortgage-Backed Securities

serve as an error check against any unintended operation (any MATLAB
operation that would return NaN).

For example, assume that the 2 month pool has a constant SMM of 0.5% and
the 3 month has a constant SMM of 1% in every period. The prepayment
matrix you would create is depicted below.

Create this input in whatever manner is best for you.

Summary of Prepayment Data Vector Representation

• When you specify a PSA prepayment speed, MATLAB "seasons" the pool
according to its age.

• When you specify your own prepayment matrix, identify the maximum
number of coupons remaining using cpncount. Then supply the matrix
elements up to the point when cash flow ceases to exist.

• When different length pools must exist in the same matrix, pad the shorter
one(s) with NaN. Each column of the prepayment matrix corresponds to a
specific pool.

2-16

3

Debt Instruments

• “Agency Option-Adjusted Spreads” on page 3-2

• “Treasury Bills Defined” on page 3-7

• “Computing Treasury Bill Price and Yield” on page 3-8

• “Using Zero-Coupon Bonds” on page 3-12

• “Stepped-Coupon Bonds” on page 3-17

• “Term Structure Calculations” on page 3-20

3 Debt Instruments

Agency Option-Adjusted Spreads
Often bonds are issued with embedded options, which then makes standard
price/yield or spread measures irrelevant. For example, a municipality
concerned about the chance that interest rates may fall in the future might
issue bonds with a provision that allows the bond to be repaid before the
bond’s maturity. This is a call option on the bond and must be incorporated
into the valuation of the bond. Option-adjusted spread (OAS), which adjusts a
bond spread for the value of the option, is the standard measure for valuing
bonds with embedded options. Fixed-Income Toolbox software supports
computing option-adjusted spreads for bonds with single embedded options
using the agency model.

The Securities Industry and Financial Markets Association (SIFMA) has
a simplified approach to compute OAS for agency issues (Government
Sponsored Entities like Fannie Mae and Freddie Mac) termed
“Agency OAS”. In this approach, the bond has only one call date
(European call) and uses Black’s model (a variation on Black Scholes,
http://en.wikipedia.org/wiki/Black_model) to value the bond option.
The price of the bond is computed as follows:

PriceCallable = PriceNonCallable – PriceOption

where

PriceCallable is the price of the callable bond.

PriceNonCallable is the price of the noncallable bond, i.e., price of the bond using
bndspread.

PriceOption is the price of the option, i.e., price of the option using Black’s
model.

The Agency OAS is the spread, when used in the previous formula, yields the
market price. Fixed-Income Toolbox software supports these functions:

3-2

Agency Option-Adjusted Spreads

(Continued)

Agency OAS
Functions Purpose

agencyoas Compute the OAS of the callable bond using the
Agency OAS model.

agencyprice Price the callable bond OAS using Agency using
the OAS model.

Computing the Agency OAS for Bonds
To compute the Agency OAS using agencyoas, you must provide the zero
curve as the input ZeroData. You can specify the zero curve in any intervals
and with any compounding method. You can do this using Financial Toolbox™
functions zbtprice and zbtyield. Or, you can use IRDataCurve to construct
an IRDataCurve object, and then use the getZeroRates to convert to dates
and data for use in the ZeroData input.

After creating the ZeroData input for agencyoas, you can then:

1 Assign parameters for CouponRate, Settle, Maturity, Vol, CallDate,
and Price.

2 Compute the option-adjusted spread using agencyoas to derive the OAS
output.

If you have the Agency OAS for the callable bond, you can use the OAS value
as an input to agencyprice to determine the price for a callable bond.

In the following example, the Agency OAS is computed using agencyoas for
a range of bond prices and the spread of an identically priced noncallable
bond is calculated using bndspread.

%% Data

% Bond data -- note that there is only 1 call date

Settle = datenum('20-Jan-2010');

Maturity = datenum('30-Dec-2013');

Coupon = .022;

Vol = .5117;

3-3

3 Debt Instruments

CallDate = datenum('30-Dec-2010');

Period = 2;

Basis = 1;

Face = 100;

% Zero Curve data

ZeroTime = [.25 .5 1 2 3 4 5 7 10 20 30]';

ZeroDates = daysadd(Settle,360*ZeroTime,1);

ZeroRates = [.0008 .0017 .0045 .0102 .0169 .0224 .0274 .0347 .0414 .0530 .0740]';

ZeroData = [ZeroDates ZeroRates];

CurveCompounding = 2;

CurveBasis = 1;

Price = 94:104;

OAS = agencyoas(ZeroData, Price', Coupon, Settle,Maturity, Vol, CallDate,'Basis',Basis)

Spread = bndspread(ZeroData, Price', Coupon, Settle, Maturity)

plot(OAS,Price)

hold on

plot(Spread,Price,'r')

xlabel('Spread (bp)')

ylabel('Price')

title('AOAS and Spread for an Agency and Equivalent Noncallable Bond')

legend({'Callable Issue','Noncallable Issue'})

OAS =

163.4942

133.7306

103.8735

73.7505

43.1094

11.5608

-21.5412

-57.3869

-98.5675

-152.5226

-239.6462

Spread =

3-4

Agency Option-Adjusted Spreads

168.1412

139.7047

111.6123

83.8561

56.4286

29.3227

2.5314

-23.9523

-50.1348

-76.0226

-101.6218

The following plot demonstrates as the price increases, the value of the
embedded option in the Agency issue increases, and the value of the issue
itself does not increase as much as it would for a noncallable bond, illustrating
the negative convexity of this issue:

3-5

3 Debt Instruments

3-6

Treasury Bills Defined

Treasury Bills Defined
Treasury bills are short-term securities (issued with maturities of 1 year
or less) sold by the United States Treasury. Sales of these securities are
frequent, usually weekly. From time to time, the Treasury also offers longer
duration securities called Treasury notes and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not
receive periodic interest payments. Instead, at the time of sale, a percentage
discount is applied to the face value. At maturity, the holder redeems the
bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this
system, interest accrues on the actual number of elapsed days between
purchase and maturity, and each year contains 360 days.

3-7

3 Debt Instruments

Computing Treasury Bill Price and Yield

In this section...

“Introduction” on page 3-8

“Treasury Bill Repurchase Agreements” on page 3-8

“Treasury Bill Yields” on page 3-10

Introduction
Fixed-Income Toolbox software provides the following suite of functions for
computing price and yield on Treasury bills.

Treasury Bill Functions

Function Purpose

tbilldisc2yield Convert discount rate to yield.

tbillprice Price Treasury bill given its yield or discount rate.

tbillrepo Break-even discount of repurchase agreement.

tbillyield Yield and discount of Treasury bill given its price.

tbillyield2disc Convert yield to discount rate.

tbillval01 The value of 1 basis point given the characteristics
of the Treasury bill, as represented by its
settlement and maturity dates. You can relate
the basis point to discount, money-market, or
bond-equivalent yield.

For all functions with yield in the computation, you can specify yield as
money-market or bond-equivalent yield. The functions all assume a face value
of $100 for each Treasury bill.

Treasury Bill Repurchase Agreements
The following example shows how to compute the break-even discount rate.
This is the rate that correctly prices the Treasury bill such that the profit
from selling the tail equals 0.

3-8

Computing Treasury Bill Price and Yield

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

BreakevenDiscount =

0.0167

You can check the result of this computation by examining the cash flows
in and out from the repurchase transaction. First compute the price of the
Treasury bill on the purchase date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ...
PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =

99.5930

Next compute the interest due on the repurchase agreement.

RepoInterest = ...
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

RepoInterest =

0.1237

RepoInterest for a 1.49% 30-day term repurchase agreement (30/360 basis)
is 0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ...
Maturity, 3)

3-9

3 Debt Instruments

PriceOnSaleDate =

99.7167

Examining the cash flows, observe that the break-even discount causes the
sum of the price on the purchase date plus the accrued 30-day interest to be
equal to the price on sale date. The next table shows the cash flows.

Cash Flows from Repurchase Agreement

Date Cash Out Flow Cash In Flow

9/26/2002 Purchase T-bill 99.593 Repo money 99.593

10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168

Repo interest 0.1238

Total 199.3098 199.3098

Treasury Bill Yields
Using the same data as before, you can examine the money-market and
bond-equivalent yields of the Treasury bill at the time of purchase and sale.
The function tbilldisc2yield can perform both computations at one time.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...
tbilldisc2yield([InitialDiscount; BreakevenDiscount], ...
[PurchaseDate; SaleDate], Maturity)

BreakevenDiscount =

3-10

Computing Treasury Bill Price and Yield

0.0167

BEYield =

0.0164
0.0170

MMYield =

0.0162
0.0168

For the short Treasury bill (fewer than 182 days to maturity), the
money-market yield is 360/365 of the bond-equivalent yield, as this example
shows.

3-11

3 Debt Instruments

Using Zero-Coupon Bonds

In this section...

“Introduction” on page 3-12

“Measuring Zero-Coupon Bond Function Quality” on page 3-12

“Pricing Treasury Notes” on page 3-13

“Pricing Corporate Bonds” on page 3-15

Introduction
A zero-coupon bond is a corporate, Treasury, or municipal debt instrument
that pays no periodic interest. Typically, the bond is redeemed at maturity
for its full face value. It will be a security issued at a discount from its face
value, or it may be a coupon bond stripped of its coupons and repackaged
as a zero-coupon bond.

Fixed-Income Toolbox software provides functions for valuing zero-coupon
debt instruments. These functions supplement existing coupon bond functions
such as bndprice and bndyield that are available in Financial Toolbox
software.

Measuring Zero-Coupon Bond Function Quality
Zero-coupon function quality is measured by how consistent the results
are with coupon-bearing bonds. Because the zero coupon’s yield is
bond-equivalent, comparisons with coupon-bearing bonds are possible.

In the textbook case, where time (t) is measured continuously and the rate
(r) is continuously compounded, the value of a zero bond is the principal

multiplied by e r t− . In reality, the rate quoted is continuous and the basis
can be variable, requiring a more consistent approach to meet the stricter
demands of accurate pricing.

The following two examples

3-12

Using Zero-Coupon Bonds

• “Pricing Treasury Notes” on page 3-13

• “Pricing Corporate Bonds” on page 3-15

show how the zero functions are consistent with supported coupon bond
functions.

Pricing Treasury Notes
A Treasury note can be considered to be a package of zeros. The toolbox
functions that price zeros require a coupon bond equivalent yield. That
yield can originate from any type of coupon paying bond, with any periodic
payment, or any accrual basis. The next example shows the use of the toolbox
to price a Treasury note and compares the calculated price with the actual
price quotation for that day.

Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;

% Quoted yield.
QYield = 0.03342;

% Quoted price.
QPriceACT = 112.127;

CouponRate = 0.055;

Extract the cash flow and compute price from the sum of zeros discounted.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...

Period, Basis);

MaturityofZeros = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

PriceofZeros = CFlows * zeroprice(QYield, Settle, ...
MaturityofZeros, Period, Basis)/100;

3-13

3 Debt Instruments

The following table shows the intermediate calculations.

Cash Flows Discount Factors
Discounted Cash
Flows

-1.2155 1.0000 -1.2155

2.7500 0.9908 2.7246

2.7500 0.9745 2.6799

2.7500 0.9585 2.6359

2.7500 0.9427 2.5925

2.7500 0.9272 2.5499

2.7500 0.9120 2.5080

2.7500 0.8970 2.4668

2.7500 0.8823 2.4263

2.7500 0.8678 2.3864

2.7500 0.8535 2.3472

2.7500 0.8395 2.3086

2.7500 0.8257 2.2706

102.7500 0.8121 83.4451

Total 112.1263

Compare the quoted price and the calculated price based on zeros.

[QPriceACT PriceofZeros]

ans =

112.1270 112.1263

This example shows that zeroprice can satisfactorily price a Treasury note,
a semiannual actual/actual basis bond, as if it were a composed of a series
of zero-coupon bonds.

3-14

Using Zero-Coupon Bonds

Pricing Corporate Bonds
You can similarly price a corporate bond, for which there is no corresponding
zero-coupon bond, as opposed to a Treasury note, for which corresponding
zeros exist. You can create a synthetic zero-coupon bond and arrive at the
quoted coupon-bond price when you later sum the zeros.

Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;
Basis = 1;
% Quoted yield.
QYield = 0.05974;
% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

Extract cash flow and compute price from the sum of zeros.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...

Period, Basis);

Maturity = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ...

Basis)/100;

Compare quoted price and calculated price based on zeros.

[QPrice30 Price30]

ans =

99.3820 99.3828

As a test of fidelity, intentionally giving the wrong basis, say actual/actual
(Basis = 0) instead of 30/360, gives a price of 99.3972. Such a systematic

3-15

3 Debt Instruments

error, if recurring in a more complex pricing routine, quickly adds up to large
inaccuracies.

In summary, the zero functions in MATLAB software facilitate extraction of
present value from virtually any fixed-coupon instrument, up to any period
in time.

3-16

Stepped-Coupon Bonds

Stepped-Coupon Bonds

In this section...

“Introduction” on page 3-17

“Cash Flows from Stepped-Coupon Bonds” on page 3-17

“Price and Yield of Stepped-Coupon Bonds” on page 3-19

Introduction
A stepped-coupon bond has a fixed schedule of changing coupon amounts.
Like fixed coupon bonds, stepped-coupon bonds could have different periodic
payments and accrual bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of
such bonds. An accompanying function stepcpncfamounts produces the cash
flow schedules pertaining to these bonds.

Cash Flows from Stepped-Coupon Bonds
Consider a bond that has a schedule of two coupons. Suppose the bond starts
out with a 2% coupon that steps up to 4% in 2 years and onward to maturity.
Assume that the issue and settlement dates are both March 15, 2003. The
bond has a 5 year maturity. Use stepcpncfamounts to generate the cash
flow schedule and times.

Settle = datenum('15-Mar-2003');

Maturity = datenum('15-Mar-2008');

ConvDates = [datenum('15-Mar-2005')];

CouponRates = [0.02, 0.04];

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...

ConvDates, CouponRates)

Notably, ConvDates has 1 less element than CouponRates because MATLAB
software assumes that the first element of CouponRates indicates the coupon
schedule between Settle (March 15, 2003) and the first element of ConvDates
(March 15, 2005), shown diagrammatically below.

3-17

3 Debt Instruments

Pay 2% from March
15, 2003

Pay 4% from March
15, 2003

Effective 2% on March
15, 2003

Effective 4% on March
15, 2005

Coupon Dates Semiannual Coupon Payment

15-Mar-03 0

15-Sep-03 1

15-Mar-04 1

15-Sep-04 1

15-Mar-05 1

15-Sep-05 2

15-Mar-06 2

15-Sep-06 2

15-Mar-07 2

15-Sep-07 2

15-Mar-08 102

The payment on March 15, 2005 is still a 2% coupon. Payment of the 4%
coupon starts with the next payment, September 15, 2005. March 15, 2005
is the end of first coupon schedule, not to be confused with the beginning of
the second.

In summary, MATLAB takes user input as the end dates of coupon schedules
and computes the next coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued
interest due on that day. It is negative if such amount is nonzero. Comparison
with cfamounts in Financial Toolbox software shows that the two functions
operate identically.

3-18

../finance/finance_product_page.html

Stepped-Coupon Bonds

Price and Yield of Stepped-Coupon Bonds
The toolbox provides two basic analytical functions to compute price and
yield for stepped-coupon bonds. Using the above bond as an example, you can
compute the price when the yield is known.

You can estimate the yield to maturity as a number-of-year weighted average
of coupon rates. For this bond, the estimated yield is:

() ()2 2 4 3
5

× + ×

.

or 3.33%. While definitely not exact (due to nonlinear relation of price and
yield), this estimate suggests close to par valuation and serves as a quick
first check on the function.

Yield = 0.0333;

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ...
Maturity, ConvDates, CouponRates)

The price returned is 99.2237 (per $100 notional), and the accrued interest is
zero, consistent with our earlier assertions.

To validate that there is consistency among the stepped-coupon functions,
you can use the above price and see if indeed it implies a 3.33% yield by
using stepcpnyield.

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ...
CouponRates)

YTM =

0.0333

3-19

3 Debt Instruments

Term Structure Calculations

In this section...

“Introduction” on page 3-20

“Computing Spot and Forward Curves” on page 3-20

“Computing Spreads” on page 3-22

Introduction
So far, a more formal definition of "yield" and its application has not been
developed. In many situations when cash flow is available, discounting factors
to the cash flows may not be immediately apparent. In other cases, what
is relevant is often a spread, the difference between curves (also known as
the term structure of spread).

All these calculations require one main ingredient, the Treasury spot,
par-yield, or forward curve. Typically, the generation of these curves starts
with a series of on-the-run and selected off-the-run issues as inputs.

MATLAB software uses these bonds to find spot rates one at a time, from the
shortest maturity onwards, using bootstrap techniques. All cash flows are
used to construct the spot curve, and rates between maturities (for these
coupons) are interpolated linearly.

Computing Spot and Forward Curves
For an illustration of how this works, observe the use of zbtyield (or
equivalently zbtprice) on a portfolio of six Treasury bills and bonds.

Bills Maturity Date Current Yield

3 month 4/17/03 1.15

6 month 7/17/03 1.18

3-20

Term Structure Calculations

Notes/Bonds Coupon Maturity Date Current Yield

2 year 1.750 12/31/04 1.68

5 year 3.000 11/15/07 2.97

10 year 4.000 11/15/12 4.01

30 year 5.375 2/15/31 4.92

You can specify prices or yields to the bonds above to infer the spot curve. The
function zbtyield accepts yields (bond-equivalent yield, to be exact).

To proceed, first assemble the above table into a variable called Bonds. The
first column contains maturities, the second contains coupons, and the third
contains notionals or face values of the bonds. (Note that bills have zero
coupons.)

Bonds = [datenum('04/17/2003') 0 100;
datenum('07/17/2003') 0 100;
datenum('12/31/2004') 0.0175 100;
datenum('11/15/2007') 0.03 100;
datenum('11/15/2012') 0.04 100;
datenum('02/15/2031') 0.05375 100];

Then specify the corresponding yields.

Yields = [0.0115;
0.0118;
0.0168;
0.0297;
0.0401;
0.0492];

You are now ready to compute the spot curve for each of these six maturities.
The spot curve is based upon a settlement date of January 17, 2003.

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

This gets you the Treasury spot curve for the day.

3-21

3 Debt Instruments

You can compute the forward curve from this spot curve with zero2fwd.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ...

Settle)

Here the notion of forward rates refers to rates between the maturity dates
shown above, not to a certain period (forward 3 month rates, for example).

Computing Spreads
Calculating the spread between specific, fixed forward periods (such as the
Treasury-Eurodollar spread) requires an extra step. Interpolate the zero
rates (or zero prices, instead) for the corresponding maturities on the interval
dates. Then use the interpolated zero rates to deduce the forward rates, and
thus the spread of Eurodollar forward curve segments versus the relevant
forward segments from Treasury bills.

3-22

Term Structure Calculations

Additionally, the variety of curve functions (including zero2fwd) helps to
standardize such calculations. For instance, by making both rates quoted
with quarterly compounding and on an actual/360 basis, the resulting spread
structure is fully comparable. This avoids the small inconsistency that occurs
when directly comparing the bond-equivalent yield of a Treasury bill to the
quarterly forward rates implied by Eurodollar futures.

Noise in Curve Computations
When introducing more bonds in constructing curves, noise may become a
factor and may need some “smoothing” (with splines, for example); this helps
obtain a smoother forward curve.

The following spot and forward curves are constructed from 67 Treasury
bonds. The fitted and bootstrapped spot curve (bottom right figure) displays
comparable stability. The forward curve (upper-left figure) contains
significant noise and shows an improbable forward rate structure. The
noise is not necessarily bad; it could uncover trading opportunities for a
relative-value approach. Yet, a more balanced approach is desired when the
bootstrapped forward curve oscillates this much and contains a negative rate
as large as -10% (not shown in the plot because it is outside the limits).

3-23

3 Debt Instruments

This example uses termfit, a demonstration function from Financial Toolbox
software that also requires the use of Curve Fitting Toolbox™ software.

3-24

../finance/finance_product_page.html
../curvefit/curvefit_product_page.html

4

Derivative Securities

• “Interest Rate Swaps” on page 4-2

• “Convertible Bond Valuation” on page 4-10

• “Bond Futures” on page 4-12

4 Derivative Securities

Interest Rate Swaps

In this section...

“Swap Pricing Assumptions” on page 4-2

“Swap Pricing Example” on page 4-3

“Portfolio Hedging” on page 4-8

Swap Pricing Assumptions
Fixed-Income Toolbox software contains the function liborfloat2fixed,
which computes a fixed-rate par yield that equates the floating-rate side of
a swap to the fixed-rate side. The solver sets the present value of the fixed
side to the present value of the floating side without having to line up and
compare fixed and floating periods.

Assumptions on Floating-Rate Input

• Rates are quarterly, for example, that of Eurodollar futures.

• Effective date is the first third Wednesday after the settlement date.

• All delivery dates are spaced 3 months apart.

• All periods start on the third Wednesday of delivery months.

• All periods end on the same dates of delivery months, 3 months after the
start dates.

• Accrual basis of floating rates is actual/360.

• Applicable forward rates are estimated by interpolation in months when
forward-rate data is not available.

Assumptions on Fixed-Rate Output

• Design allows you to create a bond of any coupon, basis, or frequency, based
upon the floating-rate input.

• The start date is a valuation date, that is, a date when an agreement to
enter into a contract by the settlement date is made.

4-2

Interest Rate Swaps

• Settlement can be on or after the start date. If it is after, a forward
fixed-rate contract results.

• Effective date is assumed to be the first third Wednesday after settlement,
the same date as that of the floating rate.

• The end date of the bond is a designated number of years away, on the
same day and month as the effective date.

• Coupon payments occur on anniversary dates. The frequency is determined
by the period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present
value as that of the floating-rate payments is created.

Swap Pricing Example
This example shows the use of the functions in computing the fixed rate
applicable to a series of 2-, 5-, and 10-year swaps based on Eurodollar market
data. According to the Chicago Mercantile Exchange (http://www.cme.com),
Eurodollar data on Friday, October 11, 2002, was as shown in the following
table.

Note This example illustrates swap calculations in MATLAB software.
Timing of the data set used was not rigorously examined and was assumed to
be the proxy for the swap rate reported on October 11, 2002.

Eurodollar Data on Friday, October 11, 2002

Month Year Settle

10 2002 98.21

11 2002 98.26

12 2002 98.3

1 2003 98.3

2 2003 98.31

3 2003 98.275

6 2003 98.12

4-3

http://www.cme.com

4 Derivative Securities

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle

9 2003 97.87

12 2003 97.575

3 2004 97.26

6 2004 96.98

9 2004 96.745

12 2004 96.515

3 2005 96.33

6 2005 96.135

9 2005 95.955

12 2005 95.78

3 2006 95.63

6 2006 95.465

9 2006 95.315

12 2006 95.16

3 2007 95.025

6 2007 94.88

9 2007 94.74

12 2007 94.595

3 2008 94.48

6 2008 94.375

9 2008 94.28

12 2008 94.185

3 2009 94.1

6 2009 94.005

9 2009 93.925

12 2009 93.865

4-4

Interest Rate Swaps

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle

3 2010 93.82

6 2010 93.755

9 2010 93.7

12 2010 93.645

3 2011 93.61

6 2011 93.56

9 2011 93.515

12 2011 93.47

3 2012 93.445

6 2012 93.41

9 2012 93.39

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates
with the toolbox function liborfloat2fixed. The function requires you
to input only Eurodollar data, the settlement date, and tenor of the swap.
MATLAB software then performs the required computations.

To illustrate how this function works, first load the data contained in the
supplied Excel® worksheet EDdata.xls.

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column.
The rate used as proxy is the arithmetic average of rates on opening and
closing.

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData];

Next, input the current date.

4-5

4 Derivative Securities

Settle = datenum('11-Oct-2002');

To compute for the 2 year swap rate, set the tenor to 2.

Tenor = 2;

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of 2.23% using the default setting
(quarterly compounding and 30/360 accrual), and forward dates and
rates data (quarterly compounded), comparable to 2.17% of Friday’s
average broker data in Table H15 of Federal Reserve Statistical Release
(http://www.federalreserve.gov/releases/h15/update/).

FixedSpec =

Coupon: 0.0223
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =

0.0178
0.0168

4-6

http://www.federalreserve.gov/releases/h15/update/

Interest Rate Swaps

0.0171
0.0189
0.0216
0.0250
0.0280
0.0306

In the FixedSpec output, note that the swap rate actually goes forward from
the third Wednesday of October 2002 (October 16, 2002), 5 days after the
original Settle input (October 11, 2002). This, however, is still the best proxy
for the swap rate on Settle, as the assumption merely starts the swap’s
effective period and does not affect its valuation method or its length.

The correction suggested by Hull and White improves the result by turning
on convexity adjustment as part of the input to liborfloat2fixed. (See
Hull, J., Options, Futures, and Other Derivatives, 4th Edition, Prentice-Hall,
2000.) For a long swap, for example, 5 years or more, this correction could
prove to be large.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing
an empty matrix [] as input.

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.

• RateParam, which provides the parameters a and S as input to the
Hull-White short rate process.

• Optional parameters InArrears and Sigma, for which you can use empty
matrices [] to accept the MATLAB defaults.

• FixedCompound, with which you can facilitate comparison with values cited
in Table H15 of Federal Reserve Statistical Release by turning the default
quarterly compounding into semiannual compounding, with the (default)
basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;

4-7

4 Derivative Securities

[FixedSpec, ForwardDaates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ...
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the 2-year swap rate, quite close to the reported swap
rate for that date.

Analogously, the following table summarizes the solutions for 1-, 3-, 5-, 7-,
and 10-year swap rates (convexity-adjusted and unadjusted).

Calculated and Market Average Data of Swap Rates on Friday,
October 11, 2002

Swap
Length
(Years) Unadjusted Adjusted Table H15

Adjusted
Error
(Basis Points)

1 1.80% 1.79% 1.80% -1

2 2.24% 2.21% 2.22% -1

3 2.70% 2.66% 2.66% 0

4 3.12% 3.03% 3.04% -1

5 3.50% 3.37% 3.36% +1

7 4.16% 3.92% 3.89% +3

10 4.87% 4.42% 4.39% +3

Portfolio Hedging
You can use these results further, such as for hedging a portfolio. The
liborduration function provides a duration-hedging capability. You can
isolate assets (or liabilities) from interest-rate risk exposure with a swap
arrangement.

Suppose you own a bond with these characteristics:

• $100 million face value

• 7% coupon paid semiannually

4-8

Interest Rate Swaps

• 5% yield to maturity

• Settlement on October 11, 2002

• Maturity on January 15, 2010

• Interest accruing on an actual/365 basis

Use of the bnddury function from Financial Toolbox software shows a modified
duration of 5.6806 years.

To immunize this asset, you can enter into a pay-fixed swap,
specifically a swap in the amount of notional principal (Ns) such that
Ns*SwapDuration + $100M*5.6806 = 0 (or Ns = -100*5.6806/SwapDuration).

Suppose again, you choose to use a 5-, 7-, or 10-year swap (3.37%, 3.92%, and
4.42% from the previous table) as your hedging tool.

SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

This gives a duration of -3.6835, -4.7307, and -6.0661 years for 5-, 7-, and
10-year swaps. The corresponding notional amount is computed by

Ns = -100*5.6806./PayFixDuration

Ns =

154.2163
120.0786
93.6443

The notional amount entered in pay-fixed side of the swap instantaneously
immunizes the portfolio.

4-9

4 Derivative Securities

Convertible Bond Valuation
A convertible bond (CB) is a debt instrument that can be converted into a
predetermined amount of a company’s equity at certain times before the
bond’s maturity.

Fixed-Income Toolbox software uses a binomial and trinomial tree approach
(cbprice) to value convertible bonds. The value of a convertible bond is
determined by the uncertainty of the related stock. Once the stock evolution
is modeled, backward discounting is computed.

The last column of such trees provides the data to decide which is more
profitable: the debt notional (plus interest, if any) or the equivalent number of
shares per the notional.

Where debt prevails, the toolbox discounts backward with the risk-free
rate plus the spread reflecting the credit risk of the issuer. Where stock
prevails, the toolbox discounts with the risk-free rate. The intrinsic value of
a convertible bond is the sum of the (probability-adjusted) debt and stock
portions from the last node. This is compared to current stock price, to see
if voluntary or forced conversion may take place. Otherwise, its value is
the intrinsic value. From here, the same discounting process is repeated
after adjusting debt portion to be equal to 0 if any conversion takes place.
Dividends and coupons are handled discretely, at the date they occur.

The approach is equivalent to solving a one-dimensional partial differential
equation such as one described by Tsiveriotis and Fernandes. (See Tsiveriotis,
K. and C. Fernandes (1998), “Valuing Convertible Bonds with Credit Risk,”
The Journal of Fixed Income, 8 (3), 95-102.) Using the same example of
bond specifications that they use (4% annual coupon, payable twice a year,
callable after 2 years at 110, and redeemable at par in 5 years), the toolbox
gives results like theirs.

4-10

Convertible Bond Valuation

The figure on the left shows the bond "floor" of the convertible (a 5% yield,
given a 4% coupon at about 97% par) when share prices are low.

The change of curvature located at the end of the second year is due to the
activation of the embedded (soft) call feature (visible on the surface plot in
the right figure).

Finally, there is the flat section when time is nearing expiration and share
prices are high, indicating a delta of unity, a characteristic of in-the-money
equity options embedded in a bond.

4-11

4 Derivative Securities

Bond Futures

In this section...

“Supported Bond Futures” on page 4-12

“Example Analysis of Bond Futures” on page 4-14

“Managing Interest-Rate Risk with Bond Futures” on page 4-16

Supported Bond Futures
Bond futures are futures contracts where the commodity for delivery is a
government bond. There are established global markets for government bond
futures. Bond futures provide a liquid alternative for managing interest-rate
risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on
Treasury bonds and notes with maturities of 2, 5, 10, and 30 years. Typically,
the following bond future contracts from the CME have maturities of 3, 6, 9,
and 12 months:

• 30-year U.S. Treasury bond

• 10-year U.S. Treasury bond

• 5-year U.S. Treasury bond

• 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver
to the long position in one of many possible existing Treasury bonds. For
example, in a 30-year Treasury bond future, the short position must deliver a
Treasury bond with at least 15 years to maturity. Because these bonds have
different values, the bond future contract is standardized by computing a
conversion factor. The conversion factor normalizes the price of a bond to a
theoretical bond with a coupon of 6%. The price of a bond future contract is
represented as:

InvoicePrice FutPrice CF AI= × +

where:

4-12

http://www.cmegroup.com/trading/interest-rates/us-treasury/30-year-us-treasury-bond_quotes_globex.html
http://www.cmegroup.com/trading/interest-rates/us-treasury/10-year-us-treasury-note.html
http://www.cmegroup.com/trading/interest-rates/us-treasury/5-year-us-treasury-note.html
http://www.cmegroup.com/trading/interest-rates/us-treasury/2-year-us-treasury-note.html

Bond Futures

FutPrice is the price of the bond future.

CF is the conversion factor for a bond to deliver in a futures contract.

AI is the accrued interest.

You can reference these conversion factors at U.S. Treasury Bond Futures
Contract. The short position in a futures contract has the option of which
bond to deliver and, in the U.S. bond market, when in the delivery month to
deliver the bond. The short position typically chooses to deliver the bond
known as the Cheapest to Deliver (CTD). The CTD bond most often delivers
on the last delivery day of the month.

Fixed-Income Toolbox software supports the following bond futures:

• U.S. Treasury bonds and notes

• German Bobl, Bund, Buxl, and Schatz

• UK gilts

• Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose

convfactor Calculates bond conversion factors for U.S. Treasury
bonds, German Bobl, Bund, Buxl, and Schatz, U.K.
gilts, and JGBs.

bndfutprice Prices bond future given repo rates.

bndfutimprepo Calculates implied repo rates for a bond future given
price.

The functions supporting U.S. Treasury bond futures are:

4-13

http://www.cmegroup.com/trading/interest-rates/files/TCF012909.xls
http://www.cmegroup.com/trading/interest-rates/files/TCF012909.xls

4 Derivative Securities

Function Purpose

tfutbyprice Calculates future prices of Treasury bonds given the
spot price.

tfutbyyield Calculates future prices of Treasury bonds given
current yield.

tfutimprepo Calculates implied repo rates for the Treasury bond
future given price.

tfutpricebyrepo Calculates implied repo rates given the Treasury
bond future price.

tfutyieldbyrepo Calculates implied repo rates given the Treasury
bond future yield.

Example Analysis of Bond Futures
The following example demonstrates analyzing German Euro-Bund futures
traded on Eurex. However, convfactor, bndfutprice, and bndfutimprepo
apply to bond futures in the U.S., U.K., Germany, and Japan. The workflow
for this analysis is:

1 Calculate bond conversion factors.

2 Calculate implied repo rates to find the CTD bond.

3 Price the bond future using the term implied repo rate.

Calculating Bond Conversion Factors
Use conversion factors to normalize the price of a particular bond for delivery
in a futures contract. When using conversion factors, the assumption is that a
bond for delivery has a 6% coupon. Use convfactor to calculate conversion
factors for all bond futures from the U.S., Germany, Japan, and U.K.

For example, conversion factors for Euro-Bund futures on Eurex are listed at
www.eurexchange.com. The delivery date for Euro-Bund futures is the 10th
day of the month, as opposed to bond futures in the U.S., where the short
position has the option of choosing when to deliver the bond.

For the 4% bond, compute the conversion factor with:

4-14

http://www.eurexchange.com/trading/products/INT/FIX/FGBL.html?mode=deliverable_bonds

Bond Futures

CF1 = convfactor('10-Sep-2009','04-Jul-2018', .04,.06,3)
CF1 =

0.8659

This syntax for convfactor works fine for bonds with standard coupon
periods. However, some deliverable bonds have long or short first coupon
periods. Compute the conversion factors for such bonds using the optional
input parameters StartDate and FirstCouponDate. Specify all optional
input arguments for convfactor as parameter/value pairs:

CF2 = convfactor('10-Sep-2009','04-Jan-2019', .0375,'Convention',3,'startdate',...

datenum('14-Nov-2008'))

CF2 =

0.8426

Calculating Implied Repo Rates to Find the CTD Bond
To determine the availability of the cheapest bond for deliverable bonds
against a futures contract, compute the implied repo rate for each bond. The
bond with the highest repo rate is the cheapest because it has the lowest
initial value, thus yielding a higher return, provided you deliver it with the
stated futures price. Use bndfutimprepo to calculate repo rates:

% Bond Properties

CouponRate = [.0425;.0375;.035];

Maturity = [datenum('04-Jul-2018');datenum('04-Jan-2019');datenum('04-Jul-2019')];

CF = [0.882668;0.842556;0.818193];

Price = [105.00;100.89;98.69];

% Futures Properties

FutSettle = '09-Jun-2009';

FutPrice = 118.54;

Delivery = '10-Sep-2009';

% Note that the default for BNDFUTIMPREPO is for the bonds to be

% semi-annual with a day count basis of 0. Since these are German

% bonds, we need to have a Basis of 8 and a Period of 1

ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, CF, ...

CouponRate, Maturity,'Basis',8,'Period',1)

4-15

4 Derivative Securities

ImpRepo =

0.0261

-0.0022

-0.0315

Pricing Bond Futures Using the Term Implied Repo Rate
Use bndfutprice to perform price calculations for all bond futures from the
U.S., Germany, Japan, and U.K. To price the bond, given a term repo rate:

% Assume a term repo rate of .0091;

RepoRate = .0091;

[FutPrice,AccrInt] = bndfutprice(RepoRate, Price(1), FutSettle,...

Delivery, CF(1), CouponRate(1), Maturity(1),...

'Basis',8,'Period',1)

FutPrice =

118.0126

AccrInt =

0.7918

Managing Interest-Rate Risk with Bond Futures
The Present Value of a Basis Point (PVBP) is used to manage interest-rate
risk. PVBP is a measure that quantifies the change in price of a bond given
a one-basis point shift in interest rates. The PVBP of a bond is computed
with the following:

PVBP
Duration MarketValue

Bond = ×
100

The PVBP of a bond futures contract can be computed with the following:

4-16

Bond Futures

PVBP
PVBP

CTDConversionFactor
Futures

CTDBond=

Use bnddurp and bnddury from Financial Toolbox software to compute the
modified durations of CTD bonds. For more information, see the Fixed-Income
Toolbox demo “Managing Interest Rate Risk with Bond Futures” at:

demo toolbox 'fixed-income'

4-17

4 Derivative Securities

4-18

5

Credit Derivatives

• “Credit Default Swap (CDS)” on page 5-2

• “Credit Default Swap Option” on page 5-17

5 Credit Derivatives

Credit Default Swap (CDS)
A credit default swap (CDS) is a contract that protects against losses resulting
from credit defaults. The transaction involves two parties, the protection
buyer and the protection seller, and also a reference entity, usually a bond.
The protection buyer pays a stream of premiums to the protection seller, who
in exchange offers to compensate the buyer for the loss in the bond’s value
if a credit event occurs. The stream of premiums is called the premium leg,
and the compensation when a credit event occurs is called the protection
leg. Credit events usually include situations in which the bond issuer goes
bankrupt, misses coupon payments, or enters a restructuring process.
Fixed-Income Toolbox software supports:

CDS Functions

Function Purpose

cdsbootstrap Compute default probability parameters from
CDS market quotes.

cdsspread Compute breakeven spreads for the CDS
contracts.

cdsprice Compute the price for the CDS contracts.

Bootstrapping a Default Probability Curve
In a typical workflow, pricing a new CDS contract involves first estimating
a default probability term structure using cdsbootstrap. This requires
market quotes of existing CDS contracts, or quotes of CDS indices (e.g.,
iTraxx). The estimated default probability curve is then used as input to
cdsspread or cdsprice. If the default probability information is already
known, cdsbootstrap can be bypassed and cdsspread or cdsprice can be
called directly.

The market information in this example is provided in the form of running
spreads of CDS contracts maturing on the CDS standard payment dates
closest to 1, 2, 3, 5, and 7 years from the valuation date.

Settle = '17-Jul-2009';

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

5-2

Credit Default Swap (CDS)

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

The bootstrapped default probability curve is plotted against time, in years,
from the valuation date.

ProbTimes = yearfrac(Settle,ProbData(:,1));
figure
plot([0; ProbTimes],[0; ProbData(:,2)])
grid on
axis([0 ProbTimes(end,1) 0 ProbData(end,2)])
xlabel('Time (years)')
ylabel('Cumulative Default Probability')
title('Bootstrapped Default Probability Curve')

5-3

5 Credit Derivatives

The associated hazard rates are returned as an optional output. The
convention is that the first hazard rate applies from the settlement date to
the first market date, the second hazard rate from the first to the second
market date, etc., and the last hazard rate applies from the second-to-last
market date onwards. The following plot displays the bootstrapped hazard
rates, plotted against time, in years, from the valuation date:

HazTimes = yearfrac(Settle,HazData(:,1));
figure
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...
[HazData(:,2);HazData(end,2)])
grid on
axis([0 HazTimes(end,1)+1 0.9*HazData(1,2) 1.1*HazData(end,2)])
xlabel('Time (years)')
ylabel('Hazard Rate')
title('Bootstrapped Hazard Rates')

5-4

Credit Default Swap (CDS)

Finding the Breakeven Spread for a New CDS
Contract
The breakeven, or running, spread is the premium a protection buyer must
pay, with no upfront payments involved, to receive protection for credit events
associated to a given reference entity. Spreads are expressed in basis points
(bp). There is a notional amount associated to the CDS contract to determine
the monetary amounts of the premium payments.

New quotes for CDS contracts can be obtained with cdsspread. After
obtaining a default probability curve using cdsbootstrap, you get quotes that
are consistent with current market conditions.

In this example, instead of standard CDS payment dates, define new maturity
dates. Using the period from 3 and 5 years (CDS standard dates), maturities
are defined within this range spaced at quarterly intervals (measuring time
from the valuation date):

5-5

5 Credit Derivatives

Settle = '17-Jul-2009';

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity1 = datestr(daysadd('17-Jul-09',360*(3.25:0.25:5),1));

Spread1 = cdsspread(ZeroData,ProbData,Settle,Maturity1);

figure

scatter(yearfrac(Settle,Maturity1),Spread1,'*')

hold on

scatter(yearfrac(Settle,MarketData(3:4,1)),MarketData(3:4,2))

hold off

grid on

xlabel('Time (years)')

ylabel('Spread (bp)')

title('CDS Spreads')

legend('New Quotes','Market','location','SouthEast')

This plot displays the resulting spreads:

5-6

Credit Default Swap (CDS)

To evaluate the effect of the recovery rate parameter, instead of 40% (default
value), use a recovery rate of 35%:

Spread1Rec35 = cdsspread(ZeroData,ProbData,Settle,Maturity1,...
'RecoveryRate',0.35);

figure
plot(yearfrac(Settle,Maturity1),Spread1,...
yearfrac(Settle,Maturity1),Spread1Rec35,'--')
grid on
xlabel('Time (years)')
ylabel('Spread (bp)')
title('CDS Spreads with Different Recovery Rates')
legend('40%','35%','location','SouthEast')

The resulting plot shows that smaller recovery rates produce higher premia,
as expected, since in the event of default, the protection payments will be
higher:

5-7

5 Credit Derivatives

Valuing an Existing CDS Contract
The current value, or mark-to-market, of an existing CDS contract is the
amount of money the contract holder would receive (if positive) or pay (if
negative) to unwind this contract. The upfront of the contract is the current
value expressed as a fraction of the notional amount of the contract, and it is
commonly used to quote market values.

The value of existing CDS contracts is obtained with cdsprice. By default,
cdsprice treats contracts as long positions. Whether a contract position is
long or short is determined from a protection standpoint, that is, long means
protection was bought, and short means protection was sold. In the following
example, an existing CDS contract pays a premium that is lower than current
market conditions. The price is positive, as expected, since it would be more
costly to buy the same type of protection today.

Settle = '17-Jul-2009';

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

5-8

Credit Default Swap (CDS)

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity2 = '20-Sep-2012';

Spread2 = 196;

[Price,AccPrem,PaymentDates,PaymentTimes,PaymentCF] = cdsprice(ZeroData,...

ProbData,Settle,Maturity2,Spread2);

fprintf('Dirty Price: %8.2f\n',Price);

fprintf('Accrued Premium: %8.2f\n',AccPrem);

fprintf('Clean Price: %8.2f\n',Price-AccPrem);

fprintf('\nPayment Schedule:\n\n');

fprintf('Date \t\t Time Frac \t Amount\n');

for k = 1:length(PaymentDates)

fprintf('%s \t %5.4f \t %8.2f\n',datestr(PaymentDates(k)),...

PaymentTimes(k),PaymentCF(k));

end

This resulting payment schedule is:

Dirty Price: 41630.75
Accrued Premium: 15244.44
Clean Price: 26386.30

Payment Schedule:

Date Time Frac Amount
20-Sep-2009 0.1806 35388.89
20-Dec-2009 0.2528 49544.44
20-Mar-2010 0.2500 49000.00
20-Jun-2010 0.2556 50088.89

5-9

5 Credit Derivatives

20-Sep-2010 0.2556 50088.89
20-Dec-2010 0.2528 49544.44
20-Mar-2011 0.2500 49000.00
20-Jun-2011 0.2556 50088.89
20-Sep-2011 0.2556 50088.89
20-Dec-2011 0.2528 49544.44
20-Mar-2012 0.2528 49544.44
20-Jun-2012 0.2556 50088.89
20-Sep-2012 0.2556 50088.89

Additionally, you can use cdsprice to value a portfolio of CDS contracts.
In the following example, a simple hedged position with two vanilla CDS
contracts, one long, one short, with slightly different spreads is priced in a
single call and the value of the portfolio is the sum of the returned prices:

[Price2,AccPrem2] = cdsprice(ZeroData,ProbData,Settle,...
repmat(datenum(Maturity2),2,1),[Spread2;Spread2+3],...
'Notional',[1e7; -1e7]);

fprintf('Contract \t Dirty Price \t Acc Premium \t Clean Price\n');
fprintf(' Long \t $ %9.2f \t $ %9.2f \t $ %9.2f \t\n',...

Price2(1), AccPrem2(1), Price2(1) - AccPrem2(1));
fprintf(' Short \t $ %8.2f \t $ %8.2f \t $ %8.2f \t\n',...

Price2(2), AccPrem2(2), Price2(2) - AccPrem2(2));
fprintf('Mark-to-market of hedged position: $ %8.2f\n',sum(Price2));

This resulting value of the portfolio is:

Contract Dirty Price Acc Premium Clean Price
Long $ 41630.75 $ 15244.44 $ 26386.30

Short $ -32709.87 $ -15477.78 $ -17232.10
Mark-to-market of hedged position: $ 8920.87

Converting from Running to Upfront and Vice Versa
A CDS market quote is given in terms of a standard spread (usually 100 bp
or 500 bp) and an upfront payment, or in terms of an equivalent running or
breakeven spread, with no upfront payment. The functions cdsbootstrap,
cdsspread, and cdsprice perform upfront to running or running to upfront
conversions.

5-10

Credit Default Swap (CDS)

For example, to convert the market quotes to upfront quotes for a standard
spread of 100 bp:

Settle = '17-Jul-2009';

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

MarketSpreads = [140 175 210 265 310]';

MarketData = [MarketDates MarketSpreads];

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle);

Maturity3 = MarketData(:,1);

Spread3Run = MarketData(:,2);

Spread3Std = 100*ones(size(Maturity3));

Price3 = cdsprice(ZeroData,ProbData,Settle,Maturity3,Spread3Std);

Upfront3 = Price3/10000000; % Standard notional of 10MM

display(Upfront3);

This resulting value is:

Upfront3 =

0.0047
0.0158
0.0327
0.0737
0.1182

The conversion can be reversed to convert upfront quotes to market quotes:

ProbData3Upf = cdsbootstrap(ZeroData,[Maturity3 Upfront3 Spread3Std],Settle);

Spread3RunFromUpf = cdsspread(ZeroData,ProbData3Upf,Settle,Maturity3);

display([Spread3Run Spread3RunFromUpf]);

Comparing the results of this conversion to the original market spread
demonstrates the reversal:

5-11

5 Credit Derivatives

ans =

140.0000 140.0000
175.0000 175.0000
210.0000 210.0000
265.0000 265.0000
310.0000 310.0000

Under the flat-hazard rate (FHR) quoting convention, a single market quote
is used to calibrate a probability curve. This convention yields a single point
in the probability curve, and a single hazard rate value. For example, assume
a 4-year (standard dates) CDS contract with a current FHR-based running
spread of 550 bp needs conversion to a CDS contract with a standard spread
of 500 bp:

Maturity4 = datenum('20-Sep-13');

Spread4Run = 550;

ProbData4Run = cdsbootstrap(ZeroData,[Maturity4 Spread4Run],Settle);

Spread4Std = 500;

Price4 = cdsprice(ZeroData,ProbData4Run,Settle,Maturity4,Spread4Std);

Upfront4 = Price4/10000000;

fprintf('A running spread of %5.2f is equivalent to\n',Spread4Run);

fprintf(' a standard spread of %5.2f with an upfront of %8.7f\n',...

Spread4Std,Upfront4);

A running spread of 550.00 is equivalent to

a standard spread of 500.00 with an upfront of 0.0167583

To reverse the conversion:

ProbData4Upf = cdsbootstrap(ZeroData,[Maturity4 Upfront4 Spread4Std],Settle);

Spread4RunFromUpf = cdsspread(ZeroData,ProbData4Upf,Settle,Maturity4);

fprintf('A standard spread of %5.2f with an upfront of %8.7f\n',...

Spread4Std,Upfront4);

fprintf(' is equivalent to a running spread of %5.2f\n',Spread4RunFromUpf);

A standard spread of 500.00 with an upfront of 0.0167583

is equivalent to a running spread of 550.00

As discussed in Beumee et. al., 2009 (see “Credit Derivatives” on page
B-5), the FHR approach is a quoting convention only, and leads to quotes

5-12

Credit Default Swap (CDS)

inconsistent with market data. For example, calculating the upfront for
the 3-year (standard dates) CDS contract with a standard spread of 100 bp
using the FHR approach and comparing the results to the upfront amounts
previously calculated, demonstrates that the FHR-based approach yields
a different upfront amount:

Maturity5 = MarketData(3,1);

Spread5Run = MarketData(3,2);

ProbData5Run = cdsbootstrap(ZeroData,[Maturity5 Spread5Run],Settle);

Spread5Std = 100;

Price5 = cdsprice(ZeroData,ProbData5Run,Settle,Maturity5,Spread5Std);

Upfront5 = Price5/10000000;

fprintf('Relative error of FHR-based upfront amount: %3.1f%%\n',...

((Upfront5-Upfront3(3))/Upfront3(3))*100);

Relative error of FHR-based upfront amount: -0.8%

Bootstrapping from Inverted Market Curves
The following two examples demonstrate the behavior of bootstrapping with
inverted CDS market curves, that is, market quotes with higher spreads
for short-term CDS contracts. The first example is handled normally by
cdsbootstrap:

Settle = '17-Jul-2009';

MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...

'20-Sep-16'});

ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...

'17-Jul-13','17-Jul-14'});

ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

ZeroData = [ZeroDates ZeroRates];

MarketSpreadsInv1 = [750 650 550 500 450]';

MarketDataInv1 = [MarketDates MarketSpreadsInv1];

[ProbDataInv1,HazDataInv1] = cdsbootstrap(ZeroData,MarketDataInv1,Settle);

In the second example, cdsbootstrap generates a warning:

MarketSpreadsInv2 = [800 550 400 250 100]';

MarketDataInv2 = [MarketDates MarketSpreadsInv2];

5-13

5 Credit Derivatives

[ProbDataInv2,HazDataInv2] = cdsbootstrap(ZeroData,MarketDataInv2,Settle);

Warning: Found non-monotone default probabilities (negative hazard rates)

A non-monotone bootstrapped probability curve implies negative default
probabilities and negative hazard rates for certain time intervals. Extreme
market conditions can lead to these types of situations. In these cases, you
must assess the reliability and usefulness of the bootstrapped results.

The following plot illustrates these bootstrapped probability curves. The
curves are concave, meaning that the marginal default probability decreases
with time. This result is consistent with the market information that
indicates a higher default risk in the short term. The second bootstrapped
curve is non-monotone, as indicated by the warning.

ProbTimes = yearfrac(Settle, MarketDates);
figure
plot([0; ProbTimes],[0; ProbDataInv1(:,2)])
hold on
plot([0; ProbTimes],[0; ProbDataInv2(:,2)],'--')
hold off
grid on
axis([0 ProbTimes(end,1) 0 ProbDataInv1(end,2)])
xlabel('Time (years)')
ylabel('Cumulative Default Probability')
title('Probability Curves for Inverted Spread Curves')
legend('1st instance','2nd instance','location','SouthEast')

The resulting plot

5-14

Credit Default Swap (CDS)

Also in line with the previous plot, the hazard rates for these bootstrapped
curves are decreasing because the short-term risk is higher. Some
bootstrapped parameters in the second curve are negative, as indicated by
the warning.

HazTimes = yearfrac(Settle, MarketDates);
figure
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...

[HazDataInv1(:,2);HazDataInv1(end,2)])
hold on
stairs([0; HazTimes(1:end-1,1); HazTimes(end,1)+1],...

[HazDataInv2(:,2);HazDataInv2(end,2)],'--')
hold off
grid on
xlabel('Time (years)')
ylabel('Hazard Rate')
title('Hazard Rates for Inverted Spread Curves')
legend('1st instance','2nd instance','location','NorthEast')

5-15

5 Credit Derivatives

The resulting plot shows the hazard rates for both bootstrapped curves:

For further discussion on inverted curves, and their relationship to arbitrage,
see O’Kane and Turnbull, 2003 (“Credit Derivatives” on page B-5).

5-16

Credit Default Swap Option

Credit Default Swap Option
A credit default swap (CDS) option, or credit default swaption, is a contract
that provides the holder with the right, but not the obligation, to enter into a
credit default swap in the future. CDS options can either be payer swaptions
or receiver swaptions. If a payer swaption, the option holder has the right to
enter into a CDS where they pay premiums; and, if a receiver swaption, the
option holder receives premiums. Fixed-Income Toolbox software provides
cdsoptprice for pricing payer and receiver credit default swaptions.

In addition, the optional knockout argument for cdsoptprice supports two
variations of the mechanics of a CDS option. CDS options can be knockout or
non-knockout options.

• A knockout option cancels with no payments if there is a credit event
before the option expiry date.

• A non-knockout option does not cancel if there is a credit event before
the option expiry date. In this case, the option holder of a non-knockout
payer swaption can take delivery of the underlying long protection CDS on
the option expiry date and exercise the protection, delivering a defaulted
obligation in return for par.

5-17

5 Credit Derivatives

5-18

6

Interest-Rate Curve Objects

• “Introduction to Interest-Rate Curve Objects” on page 6-2

• “Creating Interest-Rate Curve Objects” on page 6-4

• “Creating an IRDataCurve Object” on page 6-6

• “Creating an IRFunctionCurve Object” on page 6-13

• “Converting an IRDataCurve or IRFunctionCurve Object” on page 6-25

6 Interest-Rate Curve Objects

Introduction to Interest-Rate Curve Objects

In this section...

“Class Structure” on page 6-2

“Supported Workflow Model Using Interest-Rate Curve Objects” on page 6-3

Class Structure
Fixed-Income Toolbox class structure supports interest-rate curve objects.
The class structure supports five classes.

Class Name Description

“@IRCurve” on page A-4 Base abstract class for interest-rate curves.
IRCurve is an abstract class; you cannot
create instances of it directly. You can create
IRFunctionCurve and IRDataCurve objects
that are derived from this class.

“@IRDataCurve” on page
A-7

Creates a representation of an interest-rate
curve with dates and data. IRDataCurve is
constructed directly by specifying dates and
corresponding interest rates or discount factors,
or you can bootstrap an IRDataCurve object
from market data.

“@IRFunctionCurve” on
page A-12

Creates a representation of an interest-rate
curve with a function. IRFunctionCurve is
constructed directly by specifying a function
handle, or you can fit a function to market data
using methods of the IRFunctionCurve object.

“@IRBootstrapOptions”
on page A-2

The IRBootstrapOptions object lets you specify
options relating to the bootstrapping of an
IRDataCurve object.

“@IRFitOptions” on page
A-10

The IRFitOptions object lets you specify
options relating to the fitting process for an
IRFunctionCurve object.

6-2

Introduction to Interest-Rate Curve Objects

Supported Workflow Model Using Interest-Rate
Curve Objects
The supported workflow model for using interest-rate curve objects is:

1 Create an interest-rate curve based on an IRDataCurve object or an
IRFunctionCurve object.

• To create an IRDataCurve object:

– Use vectors of dates and data with interpolation methods.

– Use bootstrapping based on market instruments.

• To create an IRFunctionCurve object:

– Specify a function handle.

– Fit a function using the Nelson-Siegel model, Svensson model, or
smoothing spline model.

– Fit a custom function.

2 Use methods of the IRDataCurve or IRFunctionCurve objects to extract
forward, zero, discount factor, or par yield curves for the interest-rate
curve object.

3 Convert an interest-rate curve from an IRDataCurve or IRFunctionCurve
object to a RateSpec structure. This RateSpec structure is identical to
the RateSpec produced by the Financial Derivatives Toolbox™ function
intenvset. Using the RateSpec for an interest-rate curve object, you can
then use Financial Derivatives Toolbox functions to model an interest-rate
structure and price. For more information, see “Interest-Rate Derivatives”.

6-3

6 Interest-Rate Curve Objects

Creating Interest-Rate Curve Objects
Depending on your data and purpose for analysis, you can create an
interest-rate curve object by using an IRDataCurve or IRFunctionCurve
object.

To create an IRDataCurve object, you can:

• Use the IRDataCurve constructor.

• Use the IRDataCurve method bootstrap.

Using an IRDataCurve object, you can use the following methods to determine:

• Forward rate curve — getForwardRates

• Zero rate curve — getZeroRates

• Discount rate curve — getDiscountFactors

• Par yield curve — getParYields

Alternatively, to create an IRFunctionCurve object, you can:

• Use the IRFunctionCurve constructor and directly specify a function
handle.

• Use IRFunctionCurve methods:

- fitNelsonSiegel fits a Nelson-Siegel model on page Glossary-8 to
market data for bonds.

- fitSvensson fits a Svensson model on page Glossary-12 to market
data for bonds.

- fitSmoothingSpline fits a smoothing spline on page Glossary-12
function to market data for bonds.

- fitFunction custom fits an interest-rate curve object to market data
for bonds.

Using an IRFunctionCurve object, you can use the following method to
determine:

6-4

Creating Interest-Rate Curve Objects

• Forward rate curve — getForwardRates

• Zero rate curve — getZeroRates

• Discount rate curve — getDiscountFactors

• Par yield curve — getParYields

In addition, you can convert an IRDataCurve or IRFunctionCurve to a
RateSpec structure. For more information, see “Converting an IRDataCurve
or IRFunctionCurve Object” on page 6-25.

6-5

6 Interest-Rate Curve Objects

Creating an IRDataCurve Object

In this section...

“Using the IRDataCurve Constructor with Dates and Data” on page 6-6

“Using IRDataCurve bootstrap Method for Bootstrapping Based on Market
Instruments” on page 6-7

Using the IRDataCurve Constructor with Dates and
Data
Use the IRDataCurve constructor with vectors of dates and data to create
an interest-rate curve object. When constructing the IRDataCurve object,
you can also use optional inputs to define how the interest-rate curve is
constructed from the dates and data.

Example
In this example, you create the vectors for Dates and Data for an interest-rate
curve:

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

Use the IRDataCurve constructor to build interest-rate objects based on the
constant and pchip interpolation methods:

irdc_const = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','constant');

irdc_pchip = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','pchip');

Plot the forward and zero rate curves for the two IRDataCurve objects based
on constant and pchip interpolation methods:

PlottingDates = daysadd(today,180:10:360*30,1);

plot(PlottingDates,irdc_const.getForwardRates(PlottingDates),'b')

hold on

plot(PlottingDates,irdc_pchip.getForwardRates(PlottingDates),'r')

plot(PlottingDates,irdc_const.getZeroRates(PlottingDates),'g')

plot(PlottingDates,irdc_pchip.getZeroRates(PlottingDates),'yellow')

legend({'Constant Forward Rates','PCHIP Forward Rates','Constant Zero Rates',...

6-6

Creating an IRDataCurve Object

'PCHIP Zero Rates'},'location','SouthEast')

title('Interpolation methods for IRDataCurve objects')

datetick

The plot demonstrates the relationship of the forward and zero rate curves.

Using IRDataCurve bootstrap Method for
Bootstrapping Based on Market Instruments
Use the bootstrapping method, based on market instruments, to create an
interest-rate curve object. When bootstrapping, you also have the option
to define a range of interpolation methods (linear, spline, contsant, and
pchip).

Example 1
In this example, you bootstrap a swap curve from deposits, Eurodollar
Futures and swaps. The input market data for this example is hard-coded

6-7

6 Interest-Rate Curve Objects

and specified as two cell arrays of data; one cell array indicates the type of
instrument and the other contains the Settle, Maturity values and a market
quote for the instrument. For deposits and swaps, the quote is a rate; for the
EuroDollar futures, the quote is a price. Although bonds are not used in this
example, a bond would also be quoted with a price.

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...

'Futures';'Futures'; ...

'Futures';'Futures';'Futures'; ...

'Futures';'Futures';'Futures'; ...

'Futures';'Futures';'Futures'; ...

'Futures';'Futures';'Futures'; ...

'Futures';'Futures';'Futures'; ...

'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};

Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...

datenum('08/10/2007'),datenum('08/24/2007'),.0532000; ...

datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...

datenum('08/10/2007'),datenum('10/17/2007'),.0534000; ...

datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...

datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...

datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...

datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...

datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...

datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...

datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...

datenum('08/08/2007'),datenum('17-Jun-2009'),9494.5; ...

datenum('08/08/2007'),datenum('16-Sep-2009'),9489; ...

datenum('08/08/2007'),datenum('16-Dec-2009'),9481.5; ...

datenum('08/08/2007'),datenum('17-Mar-2010'),9478; ...

datenum('08/08/2007'),datenum('16-Jun-2010'),9474; ...

datenum('08/08/2007'),datenum('15-Sep-2010'),9469.5; ...

datenum('08/08/2007'),datenum('15-Dec-2010'),9464.5; ...

datenum('08/08/2007'),datenum('16-Mar-2011'),9462.5; ...

datenum('08/08/2007'),datenum('15-Jun-2011'),9456.5; ...

datenum('08/08/2007'),datenum('21-Sep-2011'),9454; ...

datenum('08/08/2007'),datenum('21-Dec-2011'),9449.5; ...

datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...

datenum('08/08/2007'),datenum('08/08/2017'),.0545; ...

datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...

6-8

Creating an IRDataCurve Object

datenum('08/08/2007'),datenum('08/08/2022'),.0559; ...

datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...

datenum('08/08/2007'),datenum('08/08/2032'),.0566; ...

datenum('08/08/2007'),datenum('08/08/2037'),.0566];

The bootstrap method is called as a static method of the “@IRDataCurve”
on page A-7 class. Inputs to this method include the curve Type (zero
or forward), Settle date, InstrumentTypes, and Instrument data.
The bootstrap method also supports optional arguments, including an
interpolation method, compounding, basis, and an options structure for
bootstrapping. For example, you are passing in an “@IRBootstrapOptions”
on page A-2 object which includes information for the ConvexityAdjustment
to forward rates.

IRsigma = .01;

CurveSettle = datenum('08/10/2007');

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...

InstrumentTypes, Instruments,'InterpMethod','pchip',...

'Compounding',-1,'IRBootstrapOptions',...

IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2))

bootModel =

IRDataCurve

Type: Forward

Settle: 733264 (10-Aug-2007)

Compounding: -1

Basis: 0 (actual/actual)

InterpMethod: pchip

Dates: [29x1 double]

Data: [29x1 double]

The bootstrap method uses an Optimization Toolbox™ function to solve
for any bootstrapped rates.

Plot the forward and zero curves:

PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';

TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

6-9

6 Interest-Rate Curve Objects

BootstrappedForwardRates = bootModel.getForwardRates(PlottingDates);

BootstrappedZeroRates = bootModel.getZeroRates(PlottingDates);

figure

hold on

plot(TimeToMaturity,BootstrappedForwardRates,'r')

plot(TimeToMaturity,BootstrappedZeroRates,'g')

title('Bootstrapped Curve')

xlabel('Time')

legend({'Forward','Zero'})

The plot demonstrates the forward and zero rate curves for the market data.

Example 2
In this example, you bootstrap a swap curve from deposits, Eurodollar
futures and swaps. The input market data for this example is hard-coded
and specified as two cell arrays of data; one cell array indicates the type of

6-10

Creating an IRDataCurve Object

instrument and the other cell array contains the Settle, Maturity values
and a market quote for the instrument. This example of bootstrapping also
demonstrates the use of an InstrumentBasis for each Instrument type:

InstrumentTypes = {'Deposit';'Deposit';...

'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...

'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...

datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...

datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...

datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...

datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...

datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...

datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...

datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...

datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...

datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...

datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...

datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

The bootstrap method is called as a static method of the “@IRDataCurve”
on page A-7 class. Inputs to this method include the curve Type (zero
or forward), Settle date, InstrumentTypes, and Instrument data.
The bootstrap method also supports optional arguments, including an
interpolation method, compounding, basis, and an options structure for
bootstrapping. In this example, you are passing an additional Basis value for
each instrument type:

bootModel=IRDataCurve.bootstrap('Forward',CurveSettle,InstrumentTypes, ...

Instruments,'InterpMethod','pchip','InstrumentBasis',[repmat(2,8,1);repmat(0,4,1)])

bootModel =

IRDataCurve

Type: Forward

Settle: 733264 (10-Aug-2007)

6-11

6 Interest-Rate Curve Objects

Compounding: 2

Basis: 0 (actual/actual)

InterpMethod: pchip

Dates: [12x1 double]

Data: [12x1 double]

The bootstrap method uses an Optimization Toolbox function to solve for
any bootstrapped rates.

Plot the par yields curve using the getParYields method:

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates,bootModel.getParYields(PlottingDates),'r')
datetick

The plot demonstrates the par yields curve for the market data.

6-12

Creating an IRFunctionCurve Object

Creating an IRFunctionCurve Object

In this section...

“Using a Function Handle to Fit an IRFunctionCurve Object” on page 6-13

“Using the Nelson-Siegel Method to Fit an IRFunctionCurve Object” on
page 6-14

“Using the Svensson Method to Fit an IRFunctionCurve Object” on page
6-16

“Using the Smoothing Spline Method to Fit an IRFunctionCurve Object”
on page 6-18

“Using the fitFunction Method to Create a Custom Fitting Function for an
IRFunctionCurve Object” on page 6-21

Using a Function Handle to Fit an IRFunctionCurve
Object
You can use the constructor IRFunctionCurve with a MATLAB function
handle to define an interest-rate curve. For more information on defining
a function handle, see the MATLAB Programming Fundamentals
documentation.

Example
This example uses a FunctionHandle argument with a value @(t) t.^2
to construct an interest-rate curve:

rr = IRFunctionCurve('Zero',today,@(t) t.^2);
rr =

Properties:
FunctionHandle: @(t)t.^2

Type: 'Zero'
Settle: 733600

Compounding: 2
Basis: 0

6-13

6 Interest-Rate Curve Objects

Using the Nelson-Siegel Method to Fit an
IRFunctionCurve Object
Use the method, fitNelsonSiegel, for the Nelson-Siegel model that fits the
empirical form of the yield curve with a prespecified functional form of the
spot rates which is a function of the time to maturity of the bonds.

The Nelson-Siegel model represents a dynamic three-factor model: level,
slope, and curvature. However, the Nelson-Siegel factors are unobserved, or
latent, which allows for measurement error, and the associated loadings have
economic restrictions (forward rates are always positive, and the discount
factor approaches zero as maturity increases). For more information, see
“Zero-coupon yield curves: technical documentation,” BIS Papers, Bank for
International Settlements, Number 25, October, 2005.

Example
This example uses IRFunctionCurve to model the default-free term structure
of interest rates in the United Kingdom.

Load the data:

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:

RepoCouponRate = repmat(0,size(RepoRates));

RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

The IRFunctionCurve object provides the capability to fit a Nelson-Siegel
curve to observed market data with the fitNelsonSiegel method. The fitting

6-14

Creating an IRFunctionCurve Object

is done by calling the Optimization Toolbox function lsqnonlin. This method
has required inputs of Type, Settle, and a matrix of instrument data.

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...

Instruments,'Compounding',-1,'InstrumentPeriod',InstrumentPeriod);

Settle = [RepoSettle;BondSettle];

Maturity = [RepoMaturity;BondMaturity];

CleanPrice = [RepoPrice;BondCleanPrice];

CouponRate = [RepoCouponRate;BondCouponRate];

Instruments = [Settle Maturity CleanPrice CouponRate];

InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];

CurveSettle = datenum('30-Apr-2008');

Plot the Nelson-Siegel interest-rate curve for forward rates:

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;

TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

NSForwardRates = NSModel.getForwardRates(PlottingDates);

plot(TimeToMaturity,NSForwardRates)

title('Nelson Siegel model of UK instantaneous nominal forward curve')

6-15

6 Interest-Rate Curve Objects

Using the Svensson Method to Fit an IRFunctionCurve
Object
Use the method, fitSvensson, for the Svensson model to improve the
flexibility of the curves and the fit for a Nelson-Siegel model. In 1994,
Svensson extended Nelson and Siegel’s function by adding a further term that
allows for a second “hump.” The extra precision is achieved at the cost of
adding two more parameters, β3 and τ2, which have to be estimated.

Example
In this example of using the fitSvensson method, an IRFitOptions
structure, previously defined using the IRFitOptions constructor, is used.
Thus, you must specify FitType, InitialGuess, UpperBound, LowerBound,
and the OptOptions optimization parameters for lsqnonlin.

Load the data:

6-16

Creating an IRFunctionCurve Object

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:

RepoCouponRate = repmat(0,size(RepoRates));

RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Define OptOptions for the IRFitOptions constructor:

OptOptions = optimset('lsqnonlin');

OptOptions = optimset(OptOptions,'MaxFunEvals',1000);

fIRFitOptions = IRFitOptions([5.82 -2.55 -.87 0.45 3.9 0.44],...

'FitType','durationweightedprice','OptOptions',OptOptions,...

'LowerBound',[0 -Inf -Inf -Inf 0 0],'UpperBound',[Inf Inf Inf Inf Inf Inf]);

Fit the interest-rate curve using a Svensson model:

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...

Instruments,'IRFitOptions',fIRFitOptions, 'Compounding',-1,...

'InstrumentPeriod',InstrumentPeriod);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the selected value of the function tolerance.

The status message, output from lsqnonlin, indicates that the optimization
to find parameters for the Svensson equation terminated successfully.

Plot the Svensson interest-rate curve for forward rates:

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;

6-17

6 Interest-Rate Curve Objects

TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

SvenssonForwardRates = SvenssonModel.getForwardRates(PlottingDates);

plot(TimeToMaturity,SvenssonForwardRates)

title('Svensson model of UK instantaneous nominal forward curve')

Using the Smoothing Spline Method to Fit an
IRFunctionCurve Object
Use the method, fitSmoothingSpline, to model the term structure with a
spline, specifically, the term structure represents the forward curve with a
cubic spline.

Note You must have a license for Curve Fitting Toolbox software to use
the fitSmoothingSpline method.

6-18

Creating an IRFunctionCurve Object

Example
The IRFunctionCurve object is used to fit a smoothing spline representation
of the forward curve with a penalty function. Required inputs are Type,
Settle, the matrix of Instruments, and Lambdafun, a function handle
containing the penalty function

Load the data:

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:

RepoCouponRate = repmat(0,size(RepoRates));

RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Choose parameters for Lambdafun:

L = 9.2;
S = -1;
mu = 1;

Define the Lambdafun penalty function:

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')

6-19

6 Interest-Rate Curve Objects

Use the fitSmoothinSpline method to fit the interest-rate curve and model
the Lambdafun penalty function:

VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...

Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod);

The plot demonstrates the interest-rate curve with the penalty function.

Plot the smoothing spline interest-rate curve for forward rates:

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;

TimeToMaturity = yearfrac(CurveSettle,PlottingDates);

VRPForwardRates = VRPModel.getForwardRates(PlottingDates);

plot(TimeToMaturity,VRPForwardRates)

title('Smoothing Spline model of UK instantaneous nominal forward curve')

6-20

Creating an IRFunctionCurve Object

Using the fitFunction Method to Create a Custom
Fitting Function for an IRFunctionCurve Object
When using an IRFunctionCurve object, you can create a custom fitting
function with the fitFunction method. To use fitFunction, you must
define a FunctionHandle. In addition, you must also use the constructor
IRFitOptions to define IRFitOptionsObj to support an InitialGuess for
the parameters of the curve function.

Example
The following example demonstrates the use of fitFunction with a
FunctionHandle and an IRFitOptionsObj:

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

6-21

6 Interest-Rate Curve Objects

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');

Define the FunctionHandle:

functionHandle = @(t,theta) polyval(theta,t);

Define the OptOptions for IRFitOptions:

OptOptions = optimset('lsqnonlin');
OptOptions = optimset(OptOptions,'display','iter');

Define fitFunction:

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...

functionHandle,Instruments, IRFitOptions([.05 .05 .05],'FitType','price',...

'OptOptions',OptOptions));

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 4 38036.7 4.92e+004

1 8 38036.7 10 4.92e+004 0

2 12 38036.7 2.5 4.92e+004 0

3 16 38036.7 0.625 4.92e+004 0

4 20 38036.7 0.15625 4.92e+004 0

5 24 30741.5 0.0390625 1.72e+005 0

6 28 30741.5 0.078125 1.72e+005 0

7 32 30741.5 0.0195312 1.72e+005 0

8 36 28713.6 0.00488281 2.33e+005 0

9 40 20323.3 0.00976562 9.47e+005 0

10 44 20323.3 0.0195312 9.47e+005 0

11 48 20323.3 0.00488281 9.47e+005 0

12 52 20323.3 0.0012207 9.47e+005 0

13 56 19698.8 0.000305176 1.08e+006 0

14 60 17493 0.000610352 7e+006 0

15 64 17493 0.0012207 7e+006 0

16 68 17493 0.000305176 7e+006 0

17 72 15455.1 7.62939e-005 2.25e+007 0

6-22

Creating an IRFunctionCurve Object

18 76 15455.1 0.000177558 2.25e+007 0

19 80 13317.1 3.8147e-005 3.18e+007 0

20 84 12867.9 7.62939e-005 7.84e+007 0

21 88 11779.8 7.62939e-005 7.58e+006 0

22 92 11747.6 0.000152588 1.46e+005 0

23 96 11720.9 0.000305176 2.48e+005 0

24 100 11667.2 0.000610352 1.48e+005 0

25 104 11558.5 0.0012207 4.47e+005 0

26 108 11335.4 0.00244141 1.58e+005 0

27 112 10864 0.00488281 1.61e+005 0

28 116 9797.68 0.00976562 6.85e+005 0

29 120 6884.03 0.0195312 5.79e+005 0

30 124 6884.03 0.037498 5.79e+005 0

31 128 3216.51 0.00937449 1.75e+006 0

32 132 607.317 0.018749 2.94e+006 0

33 136 12.7284 0.0253662 3e+006 0

34 140 0.0760939 0.00153457 4.88e+004 0

35 144 0.0731652 3.58678e-006 24.6 0

36 148 0.0731652 6.04329e-008 0.0213 0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the selected value of the function tolerance.

Plot the custom function that is defined using fitFunction:

Yields = bndyield(CleanPrice,CouponRate,Settle(1),Maturity);

scatter(Maturity,Yields);

PlottingPoints = min(Maturity):30:max(Maturity);

hold on;

plot(PlottingPoints,CustomModel.getParYields(PlottingPoints),'r');

datetick

legend('Market Yields','Fitted Yield Curve')

title('Custom Function fit to Market Data')

6-23

6 Interest-Rate Curve Objects

6-24

Converting an IRDataCurve or IRFunctionCurve Object

Converting an IRDataCurve or IRFunctionCurve Object

In this section...

“Introduction” on page 6-25

“Using the toRateSpec Method” on page 6-25

“Using Vector of Dates and Data Methods” on page 6-26

Introduction
The IRDataCurve and IRFunctionCurve objects for interest-rate curves
support conversion to:

• A RateSpec structure. The RateSpec generated from an IRDataCurve or
IRFunctionCurve object, using the toRateSpec method, is identical to the
RateSpec structure created with intenvset using Financial Derivatives
Toolbox software.

• A vector of dates and data from an IRDataCurve object acceptable to
prbyzero, bkcall, bkput, tfutbyprice, and tfutbyyield or any function
that requires a term structure of interest rates.

Using the toRateSpec Method
To convert an IRDataCurve or IRFunctionCurve object to a RateSpec
structure, you must first create an interest-rate curve object. Then, use the
toRateSpec method for an IRDataCurve object or thetoRateSpec method for
an IRFunctionCurve object.

Example
Create a data vector from the following data:
http://www.ustreas.gov/offices/domestic-finance/debt-management/
interest-rate/yield.shtml:

Data = [1.85 1.84 1.91 2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[30 90 180 360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],2);

scatter(Dates,Data)

datetick

6-25

http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml
http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml

6 Interest-Rate Curve Objects

Create an IRDataCurve interest-rate curve object:

rr = IRDataCurve('Zero',today,Dates,Data);

Convert to a RateSpec:

rr.toRateSpec(today+30:30:today+365)
ans =

FinObj: 'RateSpec'
Compounding: 2

Disc: [12x1 double]
Rates: [12x1 double]

EndTimes: [12x1 double]
StartTimes: [12x1 double]

EndDates: [12x1 double]
StartDates: 733569

ValuationDate: 733569
Basis: 0

EndMonthRule: 1

Using Vector of Dates and Data Methods
You can use the getZeroRates method for an IRDataCurve object with a
Dates property to create a vector of dates and data acceptable for prbyzero
in Financial Toolbox software and bkcall, bkput, tfutbyprice, and
tfutbyyield in Fixed-Income Toolbox software.

Example
This is an example of using the IRDataCurve method getZeroRates with
prbyzero:

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data,'InterpMethod','pchip');

Maturity = daysadd(today,8*360,1);

CouponRate = .055;

ZeroDates = daysadd(today,180:180:8*360,1);

ZeroRates = irdc.getZeroRates(ZeroDates);

BondPrice = prbyzero([Maturity CouponRate], today, ZeroRates, ZeroDates)

BondPrice =

113.9221

6-26

7

Function Reference

Bond Futures (p. 7-2) Work with bond futures

Certificates of Deposit (p. 7-2) Work with certificates of deposit

Convertible Bonds (p. 7-3) Work with convertible bonds

Credit Default Swaps (p. 7-4) Work with credit default swaps

Derivative Securities (p. 7-4) Work with derivative securities

Interest-Rate Curve Objects (p. 7-5) Work with interest-rate curve objects

Mortgage-Backed Securities (p. 7-7) Work with mortgage-backed
securities

Option-Adjusted Spread
Computations (p. 7-8)

Work with option-adjusted spread
computations

Stepped-Coupon Bonds (p. 7-9) Work with stepped-coupon bonds

Treasury Bills (p. 7-10) Work with Treasury bills

Zero-Coupon Instruments (p. 7-11) Work with zero-coupon instruments

7 Function Reference

Bond Futures
bndfutimprepo Implied repo rates for bond future

given price

bndfutprice Price bond future given repo rates

convfactor Bond conversion factors

tfutbyprice Future prices of Treasury bonds
given spot price

tfutbyyield Future prices of Treasury bonds
given current yield

tfutimprepo Implied repo rates for Treasury bond
future given price

tfutpricebyrepo Implied repo rates given Treasury
bond future price

tfutyieldbyrepo Implied repo rates given Treasury
bond future yield

Certificates of Deposit
cdai Accrued interest on certificate of

deposit

cdprice Price of certificate of deposit

cdyield Yield on certificate of deposit (CD)

7-2

Convertible Bonds

Convertible Bonds
cbprice Price convertible bond

7-3

7 Function Reference

Credit Default Swaps
cdsbootstrap Bootstrap default probability curve

from credit default swap market
quotes

cdsoptprice Price payer and receiver credit
default swaptions

cdsprice Determine price for credit default
swap

cdsspread Determine spread of credit default
swap

Derivative Securities
bkcall Price European call option on bonds

using Black’s model

bkcaplet Price interest-rate caplet using
Black’s model

bkfloorlet Price interest-rate floorlet using
Black’s model

bkput Price European put option on bonds
using Black’s model

liborduration Duration of LIBOR-based
interest-rate swap

liborfloat2fixed Compute par fixed-rate of swap
given 3-month LIBOR data

liborprice Price swap given swap rate

7-4

Interest-Rate Curve Objects

Interest-Rate Curve Objects
bootstrap Bootstrap interest-rate curve from

market data

fitFunction Custom fit interest-rate curve object
to bond market data

fitNelsonSiegel Fit Nelson-Siegel function to bond
market data

fitSmoothingSpline Fit smoothing spline to bond market
data

fitSvensson Fit Svensson function to bond
market data

getDiscountFactors Get discount factors for input dates
for IRDataCurve

getDiscountFactors Get discount factors for input dates
for IRFunctionCurve

getForwardRates Get forward rates for input dates for
IRDataCurve

getForwardRates Get forward rates for input dates for
IRFunctionCurve

getParYields Get par yields for input dates for
IRDataCurve

getParYields Get par yields for input dates for
IRFunctionCurve

getZeroRates Get zero rates for input dates for
IRDataCurve

getZeroRates Get zero rates for input dates for
IRFunctionCurve

IRBootstrapOptions Construct specific options for
bootstrapping interest-rate curve
object

IRDataCurve Construct interest-rate curve object
from dates and data

7-5

7 Function Reference

IRFitOptions Construct specific options for fitting
interest-rate curve object

IRFunctionCurve Construct interest-rate curve object
from function handle or function and
fit to market data

toRateSpec Convert IRDataCurve object to
RateSpec

toRateSpec Convert IRFunctionCurve object to
RateSpec

7-6

Mortgage-Backed Securities

Mortgage-Backed Securities
mbscfamounts Cash flow and time mapping for

mortgage pool

mbsconvp Convexity of mortgage pool given
price

mbsconvy Convexity of mortgage pool given
yield

mbsdurp Duration of mortgage pool given
price

mbsdury Duration of mortgage pool given
yield

mbsnoprepay End-of-month mortgage cash flows
and balances without prepayment

mbspassthrough Mortgage pool cash flows and
balances with prepayment

mbsprice Mortgage-backed security price
given yield

mbsprice2speed Implied PSA prepayment speeds
given price

mbswal Weighted average life of mortgage
pool

mbsyield Mortgage-backed security yield
given price

mbsyield2speed Implied PSA prepayment speeds
given yield

psaspeed2default Benchmark default

psaspeed2rate Single monthly mortality rate given
PSA speed

7-7

7 Function Reference

Option-Adjusted Spread Computations
agencyoas Determine option-adjusted spread

of callable bond using Agency OAS
model

agencyprice Price callable bond using Agency
OAS model

mbsoas2price Price given option-adjusted spread

mbsoas2yield Yield given option-adjusted spread

mbsprice2oas Option-adjusted spread given price

mbsyield2oas Option-adjusted spread given yield

7-8

Stepped-Coupon Bonds

Stepped-Coupon Bonds
stepcpncfamounts Cash flow amounts and times for

bonds and stepped coupons

stepcpnprice Price bond with stepped coupons

stepcpnyield Yield to maturity of bond with
stepped coupons

7-9

7 Function Reference

Treasury Bills
tbilldisc2yield Convert Treasury bill discount to

equivalent yield

tbillprice Price Treasury bill

tbillrepo Break-even discount of repurchase
agreement

tbillval01 Value of one basis point

tbillyield Yield on Treasury bill

tbillyield2disc Convert Treasury bill yield to
equivalent discount

7-10

Zero-Coupon Instruments

Zero-Coupon Instruments
zeroprice Price zero-coupon instruments given

yield

zeroyield Yield of zero-coupon instruments
given price

7-11

7 Function Reference

7-12

8

Functions — Alphabetical
List

agencyoas

Purpose Determine option-adjusted spread of callable bond using Agency OAS
model

Syntax OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity,
Vol, CallDate)
OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity,
Vol, CallDate, Name,Value)

Description OAS = agencyoas(ZeroData, Price, CouponRate, Settle,
Maturity, Vol, CallDate)computes OAS of a callable bond given
price using the Agency OAS model.

OAS = agencyoas(ZeroData, Price, CouponRate, Settle,
Maturity, Vol, CallDate, Name,Value) computes OAS of a callable
bond given price using the Agency OAS model with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

ZeroData

Zero curve represented as a numRates-by-2 matrix where the first
column is zero dates and the second column is the accompanying
zero rates.

Price

numBonds-by-1 vector of prices.

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Settle

Scalar MATLAB date number for the settlement date for all bonds
and the zero data.

8-2

agencyoas

Note The Settle date must be an identical settlement date for
all the bonds and the zero curve.

Maturity

numBonds-by-1 vector of maturity dates.

Vol

numBonds-by-1 vector of volatilities in decimal form. This is
the volatility of interest rates corresponding to the time of the
CallDate.

CallDate

numBonds-by-1 vector of call dates.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

8-3

agencyoas

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

CurveBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

CurveCompounding

Compounding frequency of the zero curve. Possible values
include: –1, 0, 1, 2 , 3, 4, 6, 12.

Default: 2 (Semi-annual)

EndMonthRule

End-of-month rule; 1, indicating in effect, and 0, indicating rule
not in effect for the bond(s). When 1, the rule is in effect for the
bond(s), this means that a security that pays coupon interest on
the last day of the month will always make payment on the last
day of the month.

Default: 1 — Indicates in effect

8-4

agencyoas

Face

Face value of the bond.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when
bond has an irregular first coupon period. When FirstCouponDate
and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

InterpMethod

Interpolation method used to obtain points from the zero curve.
Values are:

• linear — linear interpolation

• cubic— piecewise cubic spline interpolation

• pchip— piecewise cubic Hermite interpolation

Default: linear

IssueDate

Bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used
when bond has an irregular last coupon period. In the absence

8-5

agencyoas

of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

Number of coupon payments per year. Possible values include:
0, 1, 2 , 3, 4, 6, 12.

Default: 2

StartDate

Forward starting date of payments.

Default: If you do not specify a StartDate, the effective start
date is the Settle date.

Output
Arguments

OAS

numBonds-by-1 matrix of option-adjusted spreads.

Definitions Agency OAS Model

The BMA European Callable Securities Formula provides a standard
methodology for computing price and option-adjusted spread for
European Callable Securities (ECS).

Examples Compute the agency OAS value:

Settle = datenum('20-Jan-2010');

ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...

3.474 4.188 4.902]'/100;

ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);

ZeroData = [ZeroDates ZeroRates];

8-6

agencyoas

Maturity = datenum('30-Dec-2013');

CouponRate = .022;

Price = 99.155;

Vol = .5117;

CallDate = datenum('30-Dec-2010');

OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate)

OAS =

8.6279

References SIFMA, The BMA European Callable Securities Formula,
http://www.sifma.org.

See Also | agencyprice |

Tutorials • “Agency Option-Adjusted Spreads” on page 3-2

8-7

http://www.sifma.org

agencyprice

Purpose Price callable bond using Agency OAS model

Syntax Price = agencyprice(ZeroData, OAS, CouponRate, Settle,
Maturity,

Vol, CallDate)
Price = agencyprice(ZeroData, OAS, CouponRate, Settle,

Maturity,
Vol, CallDate, Name,Value)

Description Price = agencyprice(ZeroData, OAS, CouponRate, Settle,
Maturity, Vol, CallDate) computes the price for a callable bond,
given OAS, using the Agency OAS model.

Price = agencyprice(ZeroData, OAS, CouponRate, Settle,
Maturity, Vol, CallDate, Name,Value) computes the price for a
callable bond, given OAS, using the Agency OAS model with additional
options specified by one or more Name,Value pair arguments.

Input
Arguments

ZeroData

Zero curve represented as a numRates-by-2 matrix where the first
column is zero dates and the second column is the accompanying
zero rates.

OAS

numBonds-by-1 vector of option-adjusted spreads, expressed as a
decimal (i.e., 50 basis points is entered as .005).

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Settle

Scalar MATLAB date number for the settlement date for all the
bonds and the zero data.

8-8

agencyprice

Note The Settle date must be an identical settlement date for
all bonds and the zero curve.

Maturity

numBonds-by-1 vector of maturity dates.

Vol

numBonds-by-1 vector of volatilities in decimal form. This is
the volatility of interest rates corresponding to the time of the
CallDate.

CallDate

numBonds-by-1 vector of call dates.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

8-9

agencyprice

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

CurveBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

CurveCompounding

Compounding frequency of the curve. Possible values include:
–1, 0, 1, 2 , 3, 4, 6, 12.

Default: 2 (Semi-annual)

EndMonthRule

End-of-month rule; 1, indicating in effect, and 0, indicating rule
not in effect for the bond(s). When 1, the rule is in effect for the
bond(s). This means that a security that pays coupon interest on
the last day of the month will always make payment on the last
day of the month.

Default: 1 — Indicates in effect

8-10

agencyprice

Face

Face value of the bond.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when
bond has an irregular first coupon period. When FirstCouponDate
and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

InterpMethod

Interpolation method used to obtain points from the zero curve.
Values are:

• linear — linear interpolation

• cubic— piecewise cubic spline interpolation

• pchip— piecewise cubic Hermite interpolation

Default: linear

IssueDate

Bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used
when bond has an irregular last coupon period. In the absence

8-11

agencyprice

of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

Number of coupon payments per year. Possible values include:
0, 1, 2 , 3, 4, 6, 12.

Default: 2

StartDate

Forward starting date of payments.

Default: If you do not specify a StartDate, the effective start
date is the Settle date.

Output
Arguments

Price

numBonds-by-1 matrix of the price.

Definitions Agency OAS Model

The BMA European Callable Securities Formula provides a standard
methodology for computing price and option-adjusted spread for
European Callable Securities (ECS).

Examples Compute the agency Price:

Settle = datenum('20-Jan-2010');

ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...

3.474 4.188 4.902]'/100;

ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);

ZeroData = [ZeroDates ZeroRates];

8-12

agencyprice

Maturity = datenum('30-Dec-2013');

CouponRate = .022;

OAS = 6.53/10000;

Vol = .5117;

CallDate = datenum('30-Dec-2010');

Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate)

Price =

99.4226

References SIFMA, The BMA European Callable Securities Formula,
http://www.sifma.org.

See Also | agencyoas |

Tutorials • “Agency Option-Adjusted Spreads” on page 3-2

8-13

http://www.sifma.org

bkcall

Purpose Price European call option on bonds using Black’s model

Syntax CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle,
Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention)

Arguments Strike Scalar or number of options (NOPT)-by-1 vector
of strike prices.

ZeroData Two-column (optionally three-column) matrix
containing zero (spot) rate information used to
discount future cash flows.

• Column 1: Serial maturity date associated
with the zero rate in the second column.

• Column 2: Annualized zero rates, in
decimal form, appropriate for discounting
cash flows occurring on the date specified
in the first column. All dates must occur
after Settle (dates must correspond to
future investment horizons) and must be
in ascending order.

• Column 3 (optional): Annual compounding
frequency. Values are 1 (annual),
2 (semiannual, default), 3 (three times
per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT-by-1 vector of annualized price
volatilities required by Black’s model.

8-14

bkcall

BondData Row vector with three (optionally four)
columns or NOPT-by-3 (optionally NOPT-by-4)
matrix specifying characteristics of underlying
bonds in the form:

[CleanPrice CouponRate Maturity Face]

CleanPrice is the price excluding accrued
interest.

CouponRate is the decimal coupon rate.

Maturity is the bond maturity date in serial
date number format.

Face is the face value of the bond. If
unspecified, the face value is assumed to be
100.

Settle Settlement date of the options. May be a
serial date number or date string. Settle also
represents the starting reference date for the
input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity
dates. May be a serial date number or date
string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual).
Supported values are 0, 1, 2, 3, 4, 6, and 12.

8-15

bkcall

Basis (Optional) Day-count basis of the bond. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. This
rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

8-16

bkcall

InterpMethod (Optional) Scalar integer zero curve
interpolation method. For cash flows that
do not fall on a date found in the ZeroData
spot curve, indicates the method used to
interpolate the appropriate zero discount rate.
Available methods are (0) nearest, (1) linear,
and (2) cubic. Default = 1. See interp1 for
more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option
contract strike price conventions.

StrikeConvention = 0 (default) defines the
strike price as the cash (dirty) price paid for
the underlying bond.

StrikeConvention = 1 defines the strike
price as the quoted (clean) price paid for the
underlying bond. When evaluating Black’s
model, the accrued interest of the bond at
option expiration is added to the input strike
price.

Description CallPrice = bkcall(Strike, ZeroData, Sigma, BondData,
Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention) using Black’s model, derives an NOPT-by-1 vector of
prices of European call options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input
zero curve, the appropriate zero rate for discounting such cash flows is
obtained by extrapolating the nearest rate on the curve (that is, if a
cash flow occurs before the first or after the last date on the input zero
curve, a flat curve is assumed).

In addition, you can use the Fixed-Income Toolbox method
getZeroRates for an IRDataCurve object with a Dates property to
create a vector of dates and data acceptable for bkcall. For more
information, see “Converting an IRDataCurve or IRFunctionCurve
Object” on page 6-25.

8-17

bkcall

Examples This example is based on Example 22.1, page 512, of Hull. (See
References below.)

Consider a European call option on a bond maturing in 9.75 years. The
underlying bond has a clean price of $935, a face value of $1000, and
pays 10% semiannual coupons. Since the bond matures in 9.75 years,
a $50 coupon will be paid in 3 months and again in 9 months. Also,
assume that the annualized volatility of the forward bond price is 9%.
Furthermore, suppose the option expires in 10 months and has a strike
price of $1000, and that the annualized continuously compounded
risk-free discount rates for maturities of 3, 9, and 10 months are 9%,
9.5%, and 10%, respectively.

% Specify the option information.

Settle = '15-Mar-2004';

Expiry = '15-Jan-2005'; % 10 months from settlement

Strike = 1000;

Sigma = 0.09;

Convention = [0 1]';

% Specify the interest-rate environment.

ZeroData = [datenum('15-Jun-2004') 0.09 -1; % 3 months

datenum('15-Dec-2004') 0.095 -1; % 9 months

datenum(Expiry) 0.10 -1]; % 10 months

% Specify the bond information.

CleanPrice = 935;

CouponRate = 0.1;

Maturity = '15-Dec-2013'; % 9.75 years from settlement

Face = 1000;

BondData = [CleanPrice CouponRate datenum(Maturity) Face];

Period = 2;

Basis = 1;

% Call Black's model.

CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,...

Expiry, Period, Basis, [], [], Convention)

8-18

bkcall

CallPrices =

9.4873

7.9686

When the strike price is the dirty price (Convention = 0), the
call option value is $9.49. When the strike price is the clean price
(Convention = 1), the call option value is $7.97.

References [1] Hull, John C., Options, Futures, and Other Derivatives, Prentice
Hall, 5th edition, 2003, pp. 287-288, 508-515.

See Also bkput

8-19

bkcaplet

Purpose Price interest-rate caplet using Black’s model

Syntax CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments CapData Number of caps (NCAP)-by-2 matrix containing cap
rates and bases: [CapRates Basis].
Values for bases may be:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

8-20

bkcaplet

For more information, see basis.

FwdRates Scalar or NCAP-by-1 vector containing forward rates
in decimal. FwdRates accrue on the same basis as
CapRates.

ZeroPrice Scalar or NCAP-by-1 vector containing zero coupon
prices with maturities corresponding to those of each
cap in CapData, per $100 nominal value.

Settle Scalar or NCAP-by-1 vector of identical elements
containing settlement date of caplets.

StartDate Scalar or NCAP-by-1 vector containing start dates of
the caplets.

EndDate Scalar or NCAP-by-1 vector containing maturity dates
of caplets.

Sigma Scalar or NCAP-by-1 vector containing volatility of
forward rates in decimal, corresponding to each caplet.

Description CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma) computes the prices of interest-rate
caplets for every $100 face value of principal.

Examples Given a notional amount of $1,000,000, compute the value of a caplet on
October 15, 2002 that starts on October 15, 2003 and ends on January
15, 2004.

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

8-21

bkcaplet

Because the caplet is $100 notional, divide $1,000,000 by $100.

Notional = 1000000/100;

CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...

Settle, BeginDates, EndDates, Sigma)

CapPrice =

519.0046

See Also bkfloorlet

8-22

bkfloorlet

Purpose Price interest-rate floorlet using Black’s model

Syntax FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments FloorData Number of floors (NFLR)-by-2 matrix containing floor
rates and bases: [FloorRate Basis].
Values for bases may be:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

8-23

bkfloorlet

For more information, see basis.

FwdRates Scalar or NFLR-by-1 vector containing forward rates
in decimal. FwdRates accrue on the same basis as
FloorRates.

ZeroPrice Scalar or NFLR-by-1 vector containing zero coupon prices
with maturities corresponding to those of each floor in
FloorData, per $100 nominal value.

Settle Scalar or NFLR-by-1 vector of identical elements
containing settlement date of floorlets.

StartDate Scalar or NFLR-by-1 vector containing start dates of the
floorlets.

EndDate Scalar or NFLR-by-1 vector containing maturity dates
of floorlets.

Sigma Scalar or NFLR-by-1 vector containing volatility of
forward rates in decimal, corresponding to each floorlet.

Description FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice,
Settle, StartDate, EndDate, Sigma) computes the prices of
interest-rate floorlets for every $100 of notional value.

Examples Given a notional amount of $1,000,000, compute the value of a floorlet
on October 15, 2002 that starts on October 15, 2003 and ends on
January 15, 2004.

FloorData = [0.08, 1];

FwdRates = 0.07;

ZeroPrice = 100*exp(-0.065*1.25);

Settle = datenum('15-Oct-2002');

BeginDates = datenum('15-Oct-2003');

EndDates = datenum('15-Jan-2004');

Sigma = 0.20;

% Because floorlet is $100 notional, divide $1,000,000 by $100.

8-24

bkfloorlet

Notional = 1000000/100;

FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...

ZeroPrice, Settle, BeginDates, EndDates, Sigma)

FloorPrice =

2823.91

See Also bkcaplet

8-25

bkput

Purpose Price European put option on bonds using Black’s model

Syntax PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry,
Period, Basis, EndMonthRule, InterpMethod, StrikeConvention)

Arguments Strike Scalar or number of options (NOPT)-by-1 vector
of strike prices.

ZeroData Two-column (optionally three-column) matrix
containing zero (spot) rate information used to
discount future cash flows.

• Column 1: Serial maturity date associated
with the zero rate in the second column.

• Column 2: Annualized zero rates, in decimal
form, appropriate for discounting cash flows
occurring on the date specified in the first
column. All dates must occur after Settle
(dates must correspond to future investment
horizons) and must be in ascending order.

• Column 3 (optional): Annual compounding
frequency. Values are 1 (annual),
2 (semiannual, default), 3 (three times
per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT-by-1 vector of annualized price
volatilities required by Black’s model.

8-26

bkput

BondData Row vector with three (optionally four) columns
or NOPT-by-3 (optionally NOPT-by-4) matrix
specifying characteristics of underlying bonds in
the form [CleanPrice CouponRate Maturity
Face] where:

• CleanPrice is the price excluding accrued
interest.

• CouponRate is the decimal coupon rate.

• Maturity is the bond maturity date in serial
date number format.

• Face is the face value of the bond. If
unspecified, the face value is assumed to be
100.

Settle Settlement date of the options. May be a
serial date number or date string. Settle also
represents the starting reference date for the
input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity
dates. May be a serial date number or date
string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual).
Supported values are 0, 1, 2, 3, 4, 6, and 12.

8-27

bkput

Basis (Optional) Day-count basis of the bond. A vector
of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. This rule applies
only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

8-28

bkput

InterpMethod (Optional) Scalar integer zero curve
interpolation method. For cash flows that do
not fall on a date found in the ZeroData spot
curve, indicates the method used to interpolate
the appropriate zero discount rate. Available
methods are (0) nearest, (1) linear, and (2) cubic.
Default = 1. See interp1 for more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option
contract strike price conventions.

StrikeConvention = 0 (default) defines the
strike price as the cash (dirty) price paid for the
underlying bond.

StrikeConvention = 1 defines the strike
price as the quoted (clean) price paid for the
underlying bond. The accrued interest of the
bond at option expiration is added to the input
strike price when evaluating Black’s model.

Description PutPrice = bkput(Strike, ZeroData, Sigma, BondData,
Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention) using Black’s model, derives an NOPT-by-1 vector of
prices of European put options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input
zero curve, the appropriate zero rate for discounting such cash flows is
obtained by extrapolating the nearest rate on the curve (that is, if a
cash flow occurs before the first or after the last date on the input zero
curve, a flat curve is assumed).

In addition, you can use the Fixed-Income Toolbox method
getZeroRates for an IRDataCurve object with a Dates property to
create a vector of dates and data acceptable for bkput. For more
information, see “Converting an IRDataCurve or IRFunctionCurve
Object” on page 6-25.

8-29

bkput

Examples This example is based on example 22.2, page 514, of Hull. (See
References below.)

Consider a European put option on a bond maturing in 10 years. The
underlying bond has a clean price of $122.82, a face value of $100,
and pays 8% semiannual coupons. Also, assume that the annualized
volatility of the forward bond yield is 20%. Furthermore, suppose the
option expires in 2.25 years and has a strike price of $115, and that
the annualized continuously compounded risk free zero (spot) curve is
flat at 5%. For a hypothetical settlement date of March 15, 2004, the
following code illustrates the use of Black’s model to duplicate the put
prices in Example 22.2 of the Hull reference. In particular, it illustrates
how to convert a broker’s yield volatility to a price volatility suitable for
Black’s model.

% Specify the option information.

Settle = '15-Mar-2004';

Expiry = '15-Jun-2006'; % 2.25 years from settlement

Strike = 115;

YieldSigma = 0.2;

Convention = [0; 1];

% Specify the interest-rate environment. Since the

% zero curve is flat, interpolation into the curve always returns

% 0.05. Thus, the following curve is not unique to the solution.

ZeroData = [datenum('15-Jun-2004') 0.05 -1;

datenum('15-Dec-2004') 0.05 -1;

datenum(Expiry) 0.05 -1];

% Specify the bond information.

CleanPrice = 122.82;

CouponRate = 0.08;

Maturity = '15-Mar-2014'; % 10 years from settlement

Face = 100;

BondData = [CleanPrice CouponRate datenum(Maturity) Face];

Period = 2; % semiannual coupons

Basis = 1; % 30/360 day-count basis

8-30

bkput

% Convert a broker's yield volatility quote to a price volatility

% required by Black's model. To duplicate Example 22.2 in Hull,

% first compute the periodic (semiannual) yield to maturity from

% the clean bond price.

Yield = bndyield(CleanPrice, CouponRate, Settle, Maturity,...

Period, Basis);

% Compute the duration of the bond at option expiration. Most

% fixed-income sensitivity analyses use the modified duration

% statistic to examine the impact of small changes in periodic

% yields on bond prices. However, Hull's example operates in

% continuous time (annualized instantaneous volatilities and

% continuously compounded zero yields for discounting coupons).

% To duplicate Hull's results, use the second output of BNDDURY,

% the Macaulay duration.

[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,...

Maturity, Period, Basis);

% Convert the yield-to-maturity from a periodic to a

% continuous yield.

Yield = Period .* log(1 + Yield./Period);

% Finally, convert the yield volatility to a price volatility via

% Hull's Equation 22.6 (page 514).

PriceSigma = Macaulay .* Yield .* YieldSigma;

% Finally, call Black's model.

PutPrices = bkput(Strike, ZeroData, PriceSigma, BondData,...

Settle, Expiry, Period, Basis, [], [], Convention)

PutPrices =

1.7838

2.4071

When the strike price is the dirty price (Convention = 0), the
call option value is $1.78. When the strike price is the clean price
(Convention = 1), the call option value is $2.41.

8-31

bkput

References [1] Hull, John C., Options, Futures, and Other Derivatives, Prentice
Hall, 5th edition, 2003, pp. 287-288, 508-515.

See Also bkcall

8-32

bndfutimprepo

Purpose Implied repo rates for bond future given price

Syntax ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity)
ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity,
'ParameterName', 'ParameterValue ...)

Description ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity) computes the
implied repo rate for a bond future given the price of a bond, the bond
properties, the price of the bond future, and the bond conversion factor.

ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity,
'ParameterName', 'ParameterValue ...) accepts optional
inputs as one or more comma-separated parameter/value pairs.
'ParameterName' is the name of the parameter inside single quotes.
ParameterValue is the value corresponding to 'ParameterName'.
Specify parameter-value pairs in any order. Names are case-insensitive.

Input
Arguments

Price

numBonds-by-1 vector of bond prices.

FutPrice

numBonds-by-1 vector of future prices

FutSettle

numBonds-by-1 vector of future settle dates.

Delivery

numBonds-by-1 vector of future delivery dates.

ConvFactor

8-33

bndfutimprepo

numBonds-by-1 vector of bond conversion factors. For more
information, see convfactor.

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Maturity

numBonds-by-1 vector of coupon rates in decimal form.

Parameter–Value Pairs

Basis

Day-count basis. Possible values include

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

8-34

bndfutimprepo

Default: 0

EndMonthRule

End-of-month rule. Values are:

• 0 — Rule is not in effect for the bond.

• 1 — Rule is in effect for the bond. This means that a security
that pays coupon interest on the last day of the month always
makes payment on the last day of the month.

Default: 1

Face

Face value of the bond. Face has no impact on key rate duration.
This calling sequence is preserved for consistency.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when
bond has an irregular first coupon period. When FirstCouponDate
and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

IssueDate

Issue date for a bond.

LastCouponDate

Last coupon date of a bond before the maturity date; used
when bond has an irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified LastCouponDate

8-35

bndfutimprepo

determines the coupon structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

Number of coupons payments per year. Possible values include:

• 0

• 1

• 2

• 3

• 4

• 6

• 12

Default: 2

ReinvestBasis

Day count basis for resinvestment rate.

Default: Identical to RepoBasis.

ReinvestRate

Rate for reinvesting intermediate coupons from the bond.

Default: Identical to ImpRepo.

8-36

bndfutimprepo

RepoBasis

Day count basis for ImpRepo.

Default: 2

StartDate

Date when a bond actually starts (the date from which a bond
cash flow is considered). To make an instrument forward-starting,
specify this date as a future date. If you do not specify StartDate,
the effective start date is the Settle date.

Output
Arguments

ImpRepo

Implied repo rate, or the repo rate that would produce the price
input.

Definitions bndfutimprepo computes the implied repo rate for a bond future given:

• Price of a bond

• Bond properties

• Price of the bond future

• Bond conversion factor

The default behavior is that the coupon reinvestment rate matches
the repo rate. However, you can specify a separate reinvestment rate
using optional inputs.

Examples Compute the repro rate for a bond future:

bndfutimprepo(129,98,'9/21/2000','12/29/2000',1.3136,.0875,'8/15/2020')

This returns:

ans =
0.0584

8-37

bndfutimprepo

References Burghardt, G., T. Belton, M. Lane, and J. Papa, The Treasury Bond
Basis, McGraw-Hill, 2005.

Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

See Also bndfutprice | convfactor

How To • “Bond Futures” on page 4-12

8-38

bndfutprice

Purpose Price bond future given repo rates

Syntax [FutPrice,AccrInt] = bndfutprice(RepoRate, Price, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity)
FutPrice,AccrInt] = bndfutprice(RepoRate, FutPrice, FutSettle,
Delivery, ConvFactor, CouponRate, Maturity,
'ParameterName','ParameterValue ...)

Description [FutPrice,AccrInt] = bndfutprice(RepoRate, Price,
FutSettle, Delivery, ConvFactor, CouponRate, Maturity)
computes the price of a bond futures contract for one or more bonds
given a repo rate, and bond properties, including the bond conversion
factor.

FutPrice,AccrInt] = bndfutprice(RepoRate, FutPrice,
FutSettle, Delivery, ConvFactor, CouponRate, Maturity,
'ParameterName','ParameterValue ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName'
is the name of the parameter inside single quotes. ParameterValue is
the value corresponding to 'ParameterName'. Specify parameter-value
pairs in any order. Names are case-insensitive.

Input
Arguments

RepoRate

numBonds-by-1 vector of repo rates.

Price

numBonds-by-1 vector of bond prices

FutSettle

numBonds-by-1 vector of future settle dates.

Delivery

numBonds-by-1 vector of future delivery dates.

ConvFactor

8-39

bndfutprice

numBonds-by-1 vector of bond conversion factors. For more
information, see convfactor.

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Maturity

numBonds-by-1 vector of coupon rates in decimal form.

Parameter–Value Pairs

Basis

Day-count basis. Possible values include

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

8-40

bndfutprice

Default: 0

EndMonthRule

End-of-month rule. Values are:

• 0 — Rule is not in effect for the bond.

• 1 — Rule is in effect for the bond. This means that a security
that pays coupon interest on the last day of the month always
makes payment on the last day of the month.

Default: 1

IssueDate

Issue date for a bond.

Face

Face value of the bond. Face has no impact on key rate duration.
This calling sequence is preserved for consistency.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when
bond has an irregular first coupon period. When FirstCouponDate
and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used
when bond has an irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified LastCouponDate

8-41

bndfutprice

determines the coupon structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

Number of coupons payments per year. Possible values include:

• 0

• 1

• 2

• 3

• 4

• 6

• 12

Default: 2

ReinvestBasis

Day count basis for reinvestment rate.

Default: Identical to RepoBasis.

ReinvestRate

Compounding convention for reinvestment rate.

Default: Identical to RepoRate.

8-42

bndfutprice

RepoBasis

Day count basis for RepoRate.

Default: 2

StartDate

Date when a bond actually starts (the date from which a bond
cash flow is considered). To make an instrument forward-starting,
specify this date as a future date. If you do not specify StartDate,
the effective start date is the Settle date.

Output
Arguments

FutPrice

Quoted futures price, per $100 notional.

AccrInt

Accrued interest due at delivery date, per $100 notional.

Definitions bndfutprice computes the price of a bond futures contract for one or
more bonds, given a repo rate, and bond properties, including the bond
conversion factor. The default behavior is that the coupon reinvestment
rate matches the repo rate. However, you can specify a separate
reinvestment rate using optional inputs.

Examples Compute the price for a bond future:

bndfutprice(.064, 129, '9/21/2000','12/29/2000', 1.3136, .0875, '8/15/2020')

The returns:

ans =
98.1516

References Burghardt, G., T. Belton, M. Lane, and J. Papa, The Treasury Bond
Basis, McGraw-Hill, 2005.

8-43

bndfutprice

Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

See Also bndfutimprepo | convfactor

How To • “Bond Futures” on page 4-12

8-44

bootstrap

Purpose Bootstrap interest-rate curve from market data

Class @IRDataCurve

Syntax Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes,
Instruments)
Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve. Acceptable
values are: discount, forward, or zero.

Settle Scalar or column vector of settlement
dates.

InstrumentTypes N-by-1 cell array (where N is the number
of instruments) indicating what kind
of instrument is in the Instruments
matrix. Acceptable values are deposit,
futures, swap, and bond.

Instruments N-by-3 data matrix for Instruments
where the first column is Settle date,
the second column is Maturity, and the
third column is the market quote (dates
must be MATLAB date numbers).

8-45

bootstrap

Note The market quote represents the
following for each instrument:

• deposit: rate

• futures: price (e.g., 9628.54)

• swap: rate

• bond: clean price

Compounding (Optional) Scalar that sets the
compounding frequency per year for an
IRDataCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding
(default)

• 3 = Compounding three times per
year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

8-46

bootstrap

Basis (Optional) Day-count basis of the
interest-rate curve. A scalar of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

8-47

bootstrap

InterpMethod (Optional) Values are:

• 'linear' — Linear interpolation
(default).

• 'constant' — Piecewise constant
interpolation.

• 'pchip' — Piecewise cubic Hermite
interpolation.

• 'spline' — Cubic spline
interpolation.

IRBootstrapOptionsObj (Optional) An IRBootstrapOptions
object.

Instrument
Parameters

For each of the supported InstrumentTypes, you can specify the
following additional instrument parameters as parameter/value pairs
by prepending the word Instrument to the parameter field. For
example, prepending InstrumentBasis distinguishes an instrument’s
Basis value from the curve’s Basis value.

CouponRate (Optional) Decimal number indicating the
annual percentage rate used to determine the
coupons payable on an instrument.

Period (Optional) Coupons per year of the instrument.
A vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

8-48

bootstrap

Basis (Optional) Day-count basis of the instrument.
A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that an
instrument’s coupon payment date is always
the same numerical day of the month. 1 = set
rule on (default), meaning that an instrument’s
coupon payment date is always the last actual
day of the month.

8-49

bootstrap

IssueDate (Optional) Date when an instrument was
issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

Face (Optional) Face or par value. Default = 100.

8-50

bootstrap

Note When using Instrument parameter/value pairs, you can specify
simple interest for an Instrument by specifying the InstrumentPeriod
value as 0. If InstrumentBasis and InstrumentPeriod are not
specified for an Instrument, the following default values are used:

• deposit instrument uses Basis as 2 (act/360) and Period is 0
(simple interest).

• futures instrument uses Basis as 2 (act/360) and Period is 4
(quarterly).

• swap instrument uses Basis as 2 (act/360) and Period is 2.

• bond instrument uses Basis as 0 (act/act) and Period is 2.

Description Dcurve = IRDataCurve.bootstrap(Type, Settle,
InstrumentTypes, Instruments, 'Parameter1', Value1,
'Parameter2', Value2, ...) bootstraps an interest-rate curve
from market data. The dates of the bootstrapped curve correspond
to the maturity dates of the input instruments. You must enter the
optional arguments for Basis, Compounding, Interpmethod, and
IRBootstrapOptionsObj as parameter/value pairs.

Examples In this bootstrapping example, InstrumentTypes, Instruments, and a
Settle date are defined:

InstrumentTypes = {'Deposit';'Deposit';...

'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...

'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...

datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...

datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...

datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...

datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...

8-51

bootstrap

datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...

datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...

datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...

datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...

datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...

datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...

datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

Use the bootstrap method to create an IRDataCurve object.

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...

InstrumentTypes, Instruments,'InterpMethod','pchip')

bootModel =

IRDataCurve

Type: Forward

Settle: 733264 (10-Aug-2007)

Compounding: 2

Basis: 0 (actual/actual)

InterpMethod: pchip

Dates: [12x1 double]

Data: [12x1 double]

To create the plot for the bootstrapped market data:

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';

plot(PlottingDates,bootModel.getParYields(PlottingDates),'r')

set(gca,'ylim',[0 .06])

datetick

8-52

bootstrap

For an example of bootstrapping using instrument parameters support
for prepending the word Instrument to the parameter field, see “Using
IRDataCurve bootstrap Method for Bootstrapping Based on Market
Instruments” on page 6-7.

How To • “@IRDataCurve” on page A-7

• “@IRBootstrapOptions” on page A-2

8-53

cbprice

Purpose Price convertible bond

Syntax [CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix]
= cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ConvRatio,
NumSteps, IssueDate, Settle, Maturity, CouponRate)
[CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix]
= cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ConvRatio,
NumSteps, IssueDate, Settle, Maturity, CouponRate,
Name,Value)

Description [CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price,
ConvRatio, NumSteps, IssueDate, Settle, Maturity,
CouponRate) price a convertible bond with a one-factor lattice method.

[CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price,
ConvRatio, NumSteps, IssueDate, Settle, Maturity,
CouponRate, Name,Value) price a convertible bond with a one-factor
lattice method with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

RiskFreeRate

Annual yield of the risk-free bond with the same maturity as the
convertible, compounded continuously. Scalar value of risk-free
rates is in decimal. (Recommended value is the yield of a risk-free
bond with the same maturity as the convertible.)

StaticSpread

Scalar value of the constant spread to risk-free rate. Adding
StaticSpread to the RiskFreeRate produces the issuer’s yield,
which reflects the credit risk.

Sigma

Scalar value of the annual volatility environment in decimal.

Price

8-54

cbprice

Scalar value of the price of the asset at the settlement or valuation
date.

ConvRatio

Scalar value of the number of assets convertible to one bond.

NumSteps

Scalar value of the number of steps within the binomial tree.

IssueDate

Scalar value of the issue date of the convertible bond.

Settle

Scalar value of the settlement date of the convertible bond.

Maturity

Scalar value of the maturity date of the convertible bond.

CouponRate

Scalar value of the coupon rate in decimal form or a C-by-2 vector
of dates and associated coupon rates.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Basis

Day-count basis of the bond. A vector of integers.

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

8-55

cbprice

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Default: 0 (actual/actual)

CallType

Scalar value for the call type. Values are 0 for a call on cash price,
or 1 for a call on clean price.

Default: 0 (cash price)

CallInfo

Two-column matrix containing the call information. The first
column is the call dates and the second column is the call prices
for every $100 face of the bond. The call, in the amount of call
prices, is activated after the corresponding call date.

Default: No call feature

ConvInfo

8-56

cbprice

Two-column matrix containing convertible information. The first
column is the convertible dates and the second column is whether
the issue is convertible or not.

Default: Bond is always convertible

DividendInfo

Two-column matrix of dividend information. The first column is
the ex-dividend date and the second column is the corresponding
amount. Enter any amount known at any time; only the
amounts that are within the lifespan of the option are used. If
the DividendType is 2, DividendInfo is a 1-by-2 matrix where
the first entry is the Settle date and the second entry is the
continuous dividend yield.

Default: No dividend

DividendType

Scalar value for dividend type. Values are:

• 0 — Dollar dividend

• 1 — Dividend yield

• 2 — Continuous dividend yield

Default: 0 (Dollar dividend)

EndMonthRule

NINST-by-1 vector for end-of-month rule. Values are 1 (on, in
effect) and 0 (off, not in effect).

Default: 1 (on, in effect)

Period

Scalar value for number of coupon payments. Values are:

8-57

cbprice

• 1 — One coupon per year

• 2 — Semiannual

• 3 — Three times a year

• 4 — Quarterly

• 6 — Bimonthly compounding

• 12 — Monthly

Default: 2 (Semiannual)

IssueDate

NINST-by-1 vector of bond issue date.

Default: If you do not specify an IssueDate, the cash flow
payment date is determined from other inputs.

FirstCouponDate

Date when a bond makes its first coupon payment; used when
bond has an irregular first coupon period. When FirstCouponDate
and LastCouponDate are both specified, FirstCouponDate takes
precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow
payment dates are determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used
when bond has an irregular last coupon period. In the absence
of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s maturity cash flow date.

8-58

cbprice

Default: If you do not specify a LastCouponDate, the cash flow
payment dates are determined from other inputs.

Period

NINST-by-1 vector for coupons per year.

Default: 2 per year

PutInfo

Two-column matrix containing put information. The first column
is the put dates and the second column is the put prices for every
$100 face of the bond. The put, in the amount of put prices, is
activated after the corresponding put date.

Default: No put feature

PutType

Scalar value for put type. Value are 0 for a put on cash price or 1
for a put on clean price.

Default: 0 (put on cash price)

TreeType

Scalar value for tree type. Values are 0 for binomial lattice or 1
for trinomial lattice.

Default: 0 (binomial lattice)

Output
Arguments

CbMatrix

Matrix of CB prices in binomial format. Price of convertible is
CbMatrix(1,1).

UndMatrix

Matrix of stock prices in binomial format.

8-59

cbprice

DebtMatrix

Matrix of CB debt component in binomial format.

EqtyMatrix

Matrix of CB equity component in binomial format.

Definitions Convertible Bond

A convertible bond (CB) is a debt instrument that you can convert into a
predetermined amount of the issuing company’s equity at certain times
before the bond’s maturity. In addition to standard bond features (for
example, maturity date, face value, coupon), a convertible bond often
has callable and puttable features.

Examples Perform a spread effect analysis of a 4% coupon convertible bond
callable at 110 at the end of the second year, maturing at par in 5 years,
with yield to maturity of 5%, and spread (of yield to maturity versus
5-year treasury) of 0, 50, 100, and 150 basis points. The underlying
stock pays no dividend.

RiskFreeRate = 0.05;

Sigma = 0.3;

ConvRatio = 1;

NumSteps = 200;

IssueDate = '2-Jan-2002';

Settle = '2-Jan-2002';

Maturity = '2-Jan-2007';

CouponRate = 0.04;

Period = 2;

Basis = 1;

EndMonthRule = 1;

DividendType = 0;

DividendInfo = [];

CallInfo = [datenum('2-Jan-2004') , 110];

CallType = 1;

TreeType = 1;

Spreads = 0:0.005:0.015;

8-60

cbprice

Prices = 40:10:140;

stock = repmat(Prices',1,length(Spreads));

convprice = zeros(length(Prices),length(Spreads));

for spreadidx = 1:length(Spreads)

for priceidx = 1:length(Prices)

[CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix] = ...

cbprice(RiskFreeRate, Spreads(spreadidx), Sigma, Prices(priceidx), ...

ConvRatio, NumSteps, IssueDate, Settle, ...

Maturity, CouponRate, Period, Basis, EndMonthRule, ...

DividendType, DividendInfo, CallType, CallInfo, TreeType);

convprice(priceidx,spreadidx) = CbMatrix(1,1);

end

end

plot(stock,convprice);

legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});

title ('Effect of Spread using Trinomial tree - 200 steps')

xlabel('Stock Price');

ylabel('Convertible Price');

text(50, 150, ['Coupon 4 semiannual,', sprintf('\n'), ...

'110 Call-on-clean after 2 years,' sprintf('\n'), ...

'maturing par in 5 years'],'fontweight','Bold')

8-61

cbprice

References Andersen, L. and D. Buffum, “Calibration and implementation of
convertible bonds models,” Working paper, Banc of America Securities,
2003.

Ayache, E., P.A. Forsyth, and K.R. Vetzal, “Valuation of Convertible
Bonds with Credit Risk,” Journal of Derivatives, 11 (Fall 2003), 9-29.

Tsiveriotis, K. and C. Fernandes, “Valuing Convertible Bonds with
Credit Risk,” Journal of Fixed Income 8, 95-102, 1998

Zabolotnyuk, Yuriy, Jones, Robert A. and Veld, Chris H., “An Empirical
Comparison of Convertible Bond Valuation Models,” (October 15, 2009).
Available at SSRN: http://ssrn.com/abstract=994805.

Tutorials • “Convertible Bond Valuation” on page 4-10

8-62

cdai

Purpose Accrued interest on certificate of deposit

Syntax AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)

Arguments CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

8-63

cdai

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument
may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty
matrix ([]).

Description AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate,
Basis) computes the accrued interest on a certificate of deposit.

AccrInt represents the accrued interest per $100 of face value.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the function is best used for short-term maturities (less than 1 year).
The default simple interest calculation is the actual/360 convention
(SIA).

Examples Given a certificate of deposit with these characteristics, compute the
accrued interest due.

CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt =

1.2917

See Also accrfrac | bndyield | stepcpnyield | tbillyield | zeroyield

8-64

cdprice

Purpose Price of certificate of deposit

Syntax [Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,
IssueDate, Basis)

Arguments Yield Simple yield to maturity over the basis denominator.

CouponRate Coupon interest rate in decimal.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

8-65

cdprice

• 13 = BUS/252

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument
may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty
matrix ([]).

Description [Price, AccrInt] = cdprice(Yield, CouponRate, Settle,
Maturity, IssueDate, Basis) computes the price of a certificate of
deposit given its yield.

Price is the clean price of the certificate of deposit per $100 of face
value.

AccruedInt is the accrued interest payable at settlement per unit of
face value.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the function is best used for short-term maturities (less than 1 year).
The default simple interest calculation is the actual/360 convention.

Examples Given a certificate of deposit with these characteristics, compute the
price and the accrued interest due on the settlement date.

Yield = 0.0525;

CouponRate = 0.05;

Settle = '02-Jan-02';

Maturity = '31-Mar-02';

IssueDate = '1-Oct-01';

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...

Maturity, IssueDate)

Price =

8-66

cdprice

99.9233

AccruedInt =

1.2917

See Also bndprice | cdai | cdyield | stepcpnprice | tbillprice

8-67

cdsbootstrap

Purpose Bootstrap default probability curve from credit default swap market
quotes

Syntax [ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,
Settle)
[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,
Settle, Name,Value)

Description [ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,
Settle) bootstraps the default probability curve using credit default
swap (CDS) market quotes. The market quotes can be expresed as a
list of maturity dates and corresponding CDS market spreads, or as a
list of maturities and corresponding upfronts and standard spreads
for standard CDS contracts. The estimation uses the standard model
of the survival probability.

[ProbData, HazData] = cdsbootstrap(ZeroData, MarketData,
Settle, Name,Value) bootstraps the default probability curve using
CDS market quotes with additional options specified by one or more
Name,Value pair arguments. The market quotes can be expresed as a
list of maturity dates and corresponding CDS market spreads, or as a
list of maturities and corresponding upfronts and standard spreads
for standard CDS contracts. The estimation uses the standard model
of the survival probability.

Input
Arguments

ZeroData

M-by-2 vector of dates and zero rates or IRCurve of zero rates.

MarketData

N-by-2matrix of dates and corresponding market spreads or N-by-2
matrix of dates, upfronts, and standard spreads of CDS contracts.

Settle

Settlement date is a serial date number or date string. This must
be earlier than or equal to the dates in MarketData.

8-68

cdsbootstrap

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

8-69

cdsbootstrap

For more information, see basis.

Default: 2 (actual/360)

BusDayConvention

String or N-by-1 cell array of strings of business day conventions.
Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

PayAccruedPremium

N-by-1 vector of Boolean flags, True (default), if accrued premiums
are paid upon default, False otherwise.

Default: True

Period

N-by-1 vector of the number of premiums per year of the CDS.
Allowed values are 1, 2, 3, 4, 6, and 12.

Default: 4

ProbDates

P-by-1 vector of dates for ProbData.

Default: Column of dates in MarketData

8-70

cdsbootstrap

RecoveryRate

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

TimeStep

Positive integer indicating the number of days to take as time step
for the numerical integration.

Default: 10 (days)

ZeroBasis

Basis of the zero curve. Choices are identical to Basis.

Default: 0 (actual/actual)

ZeroCompounding

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding

• 2 — Semiannual compounding

• 3 — Compounding three times per year

• 4 — Quarterly compounding

• 6 — Bimonthly compounding

• 12 — Monthly compounding

• -1 — Continuous compounding

8-71

cdsbootstrap

Note When ZeroData is an IRCurve object, the arguments
ZeroCompounding and ZeroBasis are implicit in ZeroData and
are redundant inside this function. In that case, specify these
optional arguments when constructing the IRCurve object before
calling this function.

Default: 2 (Semiannual compounding)

Output
Arguments

ProbData

P-by-2 matrix with dates and corresponding cumulative default
probability values. The dates match those in MarketData, unless
the optional input parameter ProbDates is provided.

HazData

N-by-2 matrix with dates and corresponding hazard rate values
for the standard survival probability model. The dates match
those in MarketData.

Note A warning is displayed when non-monotone default
probabilities (i.e., negative hazard rates) are found.

Examples Use cdsbootstrap with market quotes for CDS contracts to generate
ProbData and HazData values:

Settle = '17-Jul-2009';
Spread_Time = [1 2 3 5 7]';
Spread = [140 175 210 265 310]';
Market_Dates = daysadd(datenum(Settle),360*Spread_Time,1);
MarketData = [Market_Dates Spread];
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(datenum(Settle),360*Zero_Time,1);

8-72

cdsbootstrap

ZeroData = [Zero_Dates Zero_Rate];

[ProbData,HazData] = cdsbootstrap(ZeroData,MarketData,Settle)
ProbData =

1.0e+005 *

7.3434 0.0000
7.3470 0.0000
7.3507 0.0000
7.3580 0.0000
7.3653 0.0000

HazData =

1.0e+005 *

7.3434 0.0000
7.3470 0.0000
7.3507 0.0000
7.3580 0.0000
7.3653 0.0000

Algorithms If the time to default is denoted by τ, the default probability curve, or
function, PD(t), and its complement, the survival function Q(t), are
given by:

PD t P t P t Q t() [] [] ()= ≤ = − > = − 1 1

In the standard model, the survival probability is defined in terms of a
piecewise constant hazard rate h(t). For example, if h(t) =

λ1, for 0 ≤t ≤ t1

λ2, for t1 < t ≤ t2

λ3, for t2 <t

then the survival function is given by Q(t) =

8-73

cdsbootstrap

e t−1 , for 0 ≤ t ≤ t1

− − − 1 2 1t t te () , for t1 < t ≤ t2

− − − − −  1 1 2 2 1 3 2t t t t te () () , for t2 < t

Given n market dates t1,...,tn and corresponding market CDS spreads
S1,...,Sn, cdsbootstrap calibrates the parameters λ1,...,λn and evaluates
PD(t) on the market dates, or an optional user-defined set of dates.

References Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course
Through the CDS Big Bang,” Fitch Solutions, Quantitative Research,
Global Special Report. April 7, 2009.

Hull, J., and A. White, “Valuing Credit Default Swaps I: No
Counterparty Default Risk,” Journal of Derivatives 8, 29-40.

O’Kane, D. and S. Turnbull, “Valuation of Credit Default Swaps.”
Lehman Brothers, Fixed Income Quantitative Credit Research, April,
2003.

See Also | cdsspread | cdsprice

Tutorials • “Credit Default Swap (CDS)” on page 5-2

8-74

cdsoptprice

Purpose Price payer and receiver credit default swaptions

Syntax [Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle,
OptionMaturity, CDSMaturity, Strike, SpreadVol)
[Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle,
OptionMaturity, CDSMaturity, Strike, SpreadVol, Name,Value)

Description [Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle,
OptionMaturity, CDSMaturity, Strike, SpreadVol) computes the
price of payer and receiver credit default swaptions.

[Payer, Receiver] = cdsoptprice(ZeroData, ProbData, Settle,
OptionMaturity, CDSMaturity, Strike, SpreadVol, Name,Value)
computes the price of payer and receiver credit default swaptions with
additional options specified by one or more Name,Value pair arguments.

Input
Arguments

ZeroData

M-by-2 vector of dates and zero rates or IRCurve of zero rates.

ProbData

P-by-2 array of dates and default probabilities.

Settle

Settlement date is a serial date number or date string. Settle
must be earlier than the maturity date.

OptionMaturity

N-by-1 vector of serial date numbers or date strings containing the
option maturity dates.

CDSMaturity

N-by-1 vector of serial date numbers or date strings containing
the CDS maturity dates.

Strike

N-by-1 vector of option strikes expressed in basis points.

8-75

cdsoptprice

SpreadVol

N-by-1 vector of annualized credit spread volatilities expressed
as a positive decimal number.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of contract day-count basis:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

8-76

cdsoptprice

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Default: 2 (actual/360)

BusDayConvention

String or N-by-1 cell array of strings of business day conventions.
Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Knockout

N-by-1 vector of Boolean flags. If the credit default swaptions is a
knockout, the flag is True, otherwise it is False.

Default: True

PayAccruedPremium

N-by-1 vector of Boolean flags. If accrued premiums are paid upon
default, the flag is True, otherwise it is False.

Default: True

8-77

cdsoptprice

Period

N-by-1 vector of the number of premiums per year of the CDS.
Allowed values are 1, 2, 3, 4, 6, and 12.

Default: 4

RecoveryRate

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

ZeroBasis

Basis of the zero curve. Choices are identical to Basis.

Default: 0 (actual/actual)

ZeroCompounding

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding

• 2 — Semiannual compounding

• 3 — Compounding three times per year

• 4 — Quarterly compounding

• 6 — Bimonthly compounding

• 12 — Monthly compounding

• −1 — Continuous compounding

8-78

cdsoptprice

Note When ZeroData is an IRCurve object, the arguments
ZeroCompounding and ZeroBasis are implicit in ZeroData and
are redundant inside this function. In that case, specify these
optional arguments when constructing the IRCurve object before
calling this function.

Default: 2 (Semiannual compounding)

Output
Arguments

Payer

N-by-1 vector of prices for payer swaptions in Basis points.

Receiver

N-by-1 vector of prices for receiver swaptions in Basis points.

Definitions Credit Default Swap Option

A credit default swap (CDS) option, or credit default swaption, is a
contract that provides the option holder with the right, but not the
obligation, to enter into a credit default swap in the future. CDS
options can either be payer swaptions or receiver swaptions. In a payer
swaption, the option holder has the right to enter into a CDS in which
they are paying premiums and in a receiver swaptions, the option
holder is receiving premiums.

Examples Use cdsoptprice to generate Payer and Receiver values:

Settle = datenum('08-Sep-2010');

OptionMaturity = datenum('08-Sep-2011');

CDSMaturity = datenum('08-Sep-2015');

OptionStrike = 200;

SpreadVolatility = .4;

Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [4.65 5.02 5.019 5.008 5.002 5.03]'/100;

Zero_Dates = daysadd(Settle,360*Zero_Time,1);

8-79

cdsoptprice

ZeroData = [Zero_Dates Zero_Rate];

Market_Time = [1 2 3 5 7 10]';

Market_Rate = [100 120 145 220 245 270]';

Market_Dates = daysadd(Settle,360*Market_Time,1);

MarketData = [Market_Dates Market_Rate];

ProbData = cdsbootstrap(ZeroData, MarketData, Settle);

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle,...

OptionMaturity, CDSMaturity, OptionStrike, SpreadVolatility)

Payer =

323.4717

Receiver =

47.2247

References O’Kane, D., Modelling Single-name and Multi-name Credit Derivatives,
Wiley, 2008.

See Also | cdsbootstrap | cdsspread | cdsprice

Tutorials • “Credit Default Swap Option” on page 5-17

8-80

cdsprice

Purpose Determine price for credit default swap

Syntax [Price, AccPrem, PaymentDates, PaymentTimes,
PaymentCF] = cdsprice(ZeroData, ProbData, Settle,
Maturity, ContractSpread)
[Price, AccPrem, PaymentDates, PaymentTimes,
PaymentCF] = cdsprice(ZeroData, ProbData,
Settle, Maturity, ContractSpread, Name,Value)

Description [Price, AccPrem, PaymentDates, PaymentTimes, PaymentCF]
= cdsprice(ZeroData, ProbData, Settle, Maturity,
ContractSpread) computes the price, or the mark-to-market value
for CDS instruments.

[Price, AccPrem, PaymentDates, PaymentTimes, PaymentCF]
= cdsprice(ZeroData, ProbData, Settle, Maturity,
ContractSpread, Name,Value) computes the price, or the
mark-to-market value for CDS instruments with additional options
specified by one or more Name,Value pair arguments.

Input
Arguments

ZeroData

M-by-2 vector of dates and zero rates or IRCurve of zero rates.

ProbData

P-by-2 array of dates and default probabilities.

Settle

Settlement date is a serial date number or date string. This must
be earlier than or equal to the dates in MarketData.

Maturity

N-by-1 vector of serial date numbers or date strings containing
the maturity dates.

ContractSpread

N-by-1 vector of contract spreads, expressed in basis points.

8-81

cdsprice

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

8-82

cdsprice

For more information, see basis.

Default: 2 (actual/360)

BusDayConvention

String or N-by-1 cell array of strings of business day conventions.
Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

Notional

N-by-1 vector of contract notional values. Use positive values for
long positions and negative values for short positions.

Default: 10MM

PayAccruedPremium

N-by-1 vector of Boolean flags. True, if accrued premiums are paid
upon default, False otherwise.

Default: True

Period

N-by-1 vector of number of premiums per year of the CDS. Allowed
values are 1, 2, 3, 4, 6, and 12.

Default: 4

8-83

cdsprice

RecoveryRate

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

TimeStep

Positive integer indicating the number of days to take as time step
for the numerical integration.

Default: 10 (days)

ZeroBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

ZeroCompounding

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding

• 2 — Semiannual compounding

• 3 — Compounding three times per year

• 4 — Quarterly compounding

• 6 — Bimonthly compounding

• 12 — Monthly compounding

• -1 — Continuous compounding

8-84

cdsprice

Note When ZeroData is an IRCurve object, the arguments
ZeroCompounding and ZeroBasis are implicit in ZeroData and
are redundant inside this function. In that case, specify these
optional arguments when constructing the IRCurve object before
calling this function.

Default: 2 (Semiannual compounding)

Output
Arguments

Price

N-by-1 vector of CDS prices.

AccPrem

N-by-1 vector of accrued premiums.

PaymentDates

N-by-numCF matrix of payment dates.

PaymentTimes

N-by-numCF matrix of accrual fractions.

PaymentCF

N-by-numCF matrix of payments.

Definitions CDS Price

The price or mark-to-market (MtM) value of an existing CDS contract is
computed using the following formula:

CDS price = Notional * (Current Spread - Contract Spread)
* RPV01

Current Spread is the current breakeven spread for a similar contract,
according to current market conditions. RPV01 is the ’risky present
value of a basis point,’ the present value of the premium payments,

8-85

cdsprice

taking into consideration the default probability. This formula assumes
a long position, and the right side is multiplied by -1 for short positions.

Examples Use cdsprice to compute the clean price for a CDS contract:

Settle = '17-Jul-2009';

Zero_Time = [.5 1 2 3 4 5]';

Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;

Zero_Dates = daysadd(Settle,360*Zero_Time,1);

ZeroData = [Zero_Dates Zero_Rate];

ProbData = [daysadd(datenum(Settle),360,1), 0.0247];

Maturity = '20-Sep-2010';

ContractSpread = 135;

[Price,AccPrem] = cdsprice(ZeroData,ProbData,Settle,Maturity,ContractSpread);

CleanPrice = Price - AccPrem

CleanPrice =

4.9381e+003

Algorithms The premium leg is computed as the product of a spread S and the risky
present value of a basis point (RPV01). The RPV01 is given by:

RPV Z t t t B Q tj j j j

j

N
01

1
1=

=
∑ −() (, ,) ()Δ

when no accrued premiums are paid upon default, and it can be
approximated by

RPV Z t t t B Q t Q tj j j j j

j

N
01

1
2 1

1 1≈ +
=
∑ − −() (, ,)(() ())Δ

when accrued premiums are paid upon default. Here, t0 = 0 is the
valuation date, and t1,...,tn = T are the premium payment dates over the
life of the contract,T is the maturity of the contract, Z(t) is the discount

8-86

cdsprice

factor for a payment received at time t, and Δ(tj-1, tj, B) is a day count
between dates tj-1 and tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg Z R dPD
T

= −∫ ()() () 1
0

≈ − −
=
∑ −() ()(() ())1

1
1R Z PD PDi i i

i

M
  

= − −
=
∑ −() ()(() ())1

1
1R Z Q Qi i i

i

M
  

where the integral is approximated with a finite sum over the
discretization τ0 = 0,τ1,...,τM = T.

If the spread of an existing CDS contract is SC, and the current
breakeven spread for a comparable contract is S0, the current price, or
mark-to-market value of the contract is given by:

MtM = Notional (S0 –SC)RPV01

This assumes a long position from the protection standpoint (protection
was bought). For short positions, the sign is reversed.

References Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course
Through the CDS Big Bang,” Fitch Solutions, Quantitative Research,
Global Special Report. April 7, 2009.

Hull, J., and A. White, “Valuing Credit Default Swaps I: No
Counterparty Default Risk,” Journal of Derivatives 8, 29-40.

O’Kane, D. and S. Turnbull, “Valuation of Credit Default Swaps.”
Lehman Brothers, Fixed Income Quantitative Credit Research, April,
2003.

See Also | cdsspread | cdsbootstrap

8-87

cdsprice

Tutorials • “Credit Default Swap (CDS)” on page 5-2

8-88

cdsspread

Purpose Determine spread of credit default swap

Syntax [Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,
ProbData, Settle, Maturity)
[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,
ProbData, Settle, Maturity, Name,Value)

Description [Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,
ProbData, Settle, Maturity) computes the spread of the CDS.

[Spread, PaymentDates, PaymentTimes] = cdsspread(ZeroData,
ProbData, Settle, Maturity, Name,Value) computes the spread of
the CDS with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

ZeroData

M-by-2 vector of dates and zero rates or IRCurve of zero rates.

ProbData

P-by-2 array of dates and default probabilities.

Settle

Settlement date is a serial date number or date string. This must
be earlier than or equal to the dates in MarketData.

Maturity

N-by-1 vector of serial date numbers or date strings containing
the maturity dates.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

8-89

cdsspread

Note Any optional input of size N-by-1 is also acceptable as an array of
size 1-by-N, or as a single value applicable to all contracts. Single values
are internally expanded to an array of size N-by-1.

Basis

N-by-1 vector of day-count basis of the CDS:

• 0 = actual/actual

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Default: 2 (actual/360)

BusDayConvention

8-90

cdsspread

String or N-by-1 cell array of strings of business day conventions.
Values are:

• actual

• follow

• modifiedfollow

• previous

• modifiedprevious

Default: actual

PayAccruedPremium

N-by-1 vector of Boolean flags, True, if accrued premiums are paid
upon default, False otherwise.

Default: True

Period

N-by-1 vector of number of premiums per year of the CDS. Allowed
values are 1, 2, 3, 4, 6, and 12.

Default: 4

RecoveryRate

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

TimeStep

Positive integer indicating the number of days to take as time step
for the numerical integration.

Default: 10 (days)

8-91

cdsspread

ZeroBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

ZeroCompounding

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding

• 2 — Semiannual compounding

• 3 — Compounding three times per year

• 4 — Quarterly compounding

• 6 — Bimonthly compounding

• 12 — Monthly compounding

• -1 — Continuous compounding

Note When ZeroData is an IRCurve object, the arguments
ZeroCompounding and ZeroBasis are implicit in ZeroData and
are redundant inside this function. In that case, specify these
optional arguments when constructing the IRCurve object before
calling this function.

Default: 2 (semiannual compounding)

Output
Arguments

Spread

N-by-1 vector of spreads (in basis points).

PaymentDates

N-by-numCF matrix of payment dates.

PaymentTimes

8-92

cdsspread

N-by-numCF matrix of accrual fractions.

Definitions CDS Spread

The market, or breakeven, spread value of a CDS can be computed by
equating the value of the protection leg with the value of the premium
leg:

Market Spread * RPV01 = Value of Protection Leg

The left side corresponds to the value of the premium leg, and this has
been decomposed as the product of the market or breakeven spread
times the RPV01 or ’risky present value of a basis point’ of the contract.
The latter is the present value of the premium payments, taking into
consideration the default probability. The Market Spread can be
computed as the ratio of the value of the protection leg, to the RPV01 of
the contract. cdsspread returns the resulting spread in basis points.

Examples Use cdsspread to compute the clean price for a CDS contract:

Settle = '17-Jul-2009';
Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];
ProbData = [daysadd(datenum(Settle),360,1), 0.0247];
Maturity = '20-Sep-2010';

Spread = cdsspread(ZeroData,ProbData,Settle,Maturity)

Spread =

148.2485

Algorithms The premium leg is computed as the product of a spread S and the risky
present value of a basis point (RPV01). The RPV01 is given by:

8-93

cdsspread

RPV Z t t t B Q tj j j j

j

N
01

1
1=

=
∑ −() (, ,) ()Δ

when no accrued premium are paid upon default, and it can be
approximated by

RPV Z t t t B Q t Q tj j j j j

j

N
01

1
2 1

1 1≈ +
=
∑ − −() (, ,)(() ())Δ

when accrued premiums are paid upon default. Here, t0 = 0 is the
valuation date, and t1,...,tn = T are the premium payment dates over the
life of the contract,T is the maturity of the contract, Z(t) is the discount
factor for a payment received at time t, and Δ(tj-1, tj, B) is a day count
between dates tj-1 and tj corresponding to a basis B.

The protection leg of a CDS contract is given by the following formula:

ProtectionLeg Z R dPD
T

= −∫ ()() () 1
0

≈ − −
=
∑ −() ()(() ())1

1
1R Z PD PDi i i

i

M
  

= − −
=
∑ −() ()(() ())1

1
1R Z Q Qi i i

i

M
  

where the integral is approximated with a finite sum over the
discretization τ0 = 0,τ1,...,τM = T.

A breakeven spread S0 makes the value of the premium and protection
legs equal. It follows that:

S
ProtectionLeg

RPV01
0 =

8-94

cdsspread

References Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course
Through the CDS Big Bang,” Fitch Solutions, Quantitative Research,
Global Special Report. April 7, 2009.

Hull, J., and A. White, “Valuing Credit Default Swaps I: No
Counterparty Default Risk,” Journal of Derivatives 8, 29-40.

O’Kane, D. and S. Turnbull, “Valuation of Credit Default Swaps.”
Lehman Brothers, Fixed Income Quantitative Credit Research, April,
2003.

See Also | cdsprice | cdsbootstrap

Tutorials • “Credit Default Swap (CDS)” on page 5-2

8-95

cdyield

Purpose Yield on certificate of deposit (CD)

Syntax Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,
Basis)

Arguments Price Clean price of the certificate of deposit per $100
face. If you have a vector of dirty or cash prices of
CDs, compute the accrued interest portion using
cdai.

CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

8-96

cdyield

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Each required input must be some certificates of deposit (NCDS)-by-1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument
may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty
matrix ([]).

Description Yield = cdyield(Price, CouponRate, Settle, Maturity,
IssueDate, Basis) computes the yield to maturity of a certificate of
deposit given its clean price.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the function is best used for short-term maturities (less than 1 year).
The default simple interest calculation is the actual/360 convention.

Examples Given a certificate of deposit (CD) with these characteristics, compute
the yield on the CD.

Price = 101.125;

CouponRate = 0.05;

Settle = '02-Jan-02';

Maturity = '31-Mar-02';

IssueDate = '1-Oct-01';

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)

Yield =

0.0039

8-97

cdyield

See Also bndprice | cdai | cdprice | stepcpnprice | tbillprice

8-98

convfactor

Purpose Bond conversion factors

Syntax CF = convfactor(RefDate, Maturity, CouponRate)
CF = convfactor(RefDate, Maturity, CouponRate,
'ParameterName',ParameterValue ...)

Description CF = convfactor(RefDate, Maturity, CouponRate) computes a
conversion factor for a bond futures contract.

CF = convfactor(RefDate, Maturity, CouponRate,
'ParameterName',ParameterValue ...) accepts optional inputs as
one or more comma-separated parameter-value pairs. 'ParameterName'
is the name of the parameter inside single quotes. 'ParameterValue is
the value corresponding to 'ParameterName'. Specify parameter/value
pairs in any order. Names are case-insensitive. convfactor computes
a conversion factor for a bond futures contract, given a Convention
value for a U.S. Treasury bond, German bond, U.K. Gilt, or Japanese
Government Bond.

Input
Arguments

RefDate

Reference dates, for which conversion factor is computed (usually
the first day of delivery months).

Maturity

Maturity date of the underlying bond.

CouponRate

Annual coupon rate of the underlying bond in decimal.

Parameter–Value
Pairs

Enter the following inputs only as parameter/value pairs.

Convention

Conversion factor convention. Scalar. Valid values are:

• 1 = U.S. Treasury bond (30-year) and Treasury note (10-year)
futures contract

8-99

convfactor

• 2 = U.S. 2-year and 5-year Treasury note futures contract

• 3 = German Bobl, Bund, Buxl, and Schatz

• 4 = U.K. gilts

• 5 = Japanese Government Bonds (JGBs)

Default: 1

FirstCouponDate

Irregular or normal first coupon date.

RefYield

Reference semiannual yield.

Default: 0.06 (6%)

StartDate

Forward starting date of payments.

Output
Arguments

CF

N-by1 vector of conversion factors against the 6% yield par-bond.

Definitions Conversion factors of U.S. Treasury bonds and other government bonds
are based on a bond yielding 6%. Optionally, you can specify other types
of bonds and yields using inputs for RefYield and Convention. For
U.S. Treasury bonds, verify the output of convfactor by comparing the
output against the quotations provided by the Chicago Board of Trade
(http://www.cbot.com).

For German bonds, verify the output of convfactor by
comparing the output against the quotations provided by Eurex
(http://www.eurexchange.com).

For U.K. Gilts, verify the output of convfactor by comparing
the output against the quotations provided by Euronext
(http://www.euronext.com).

8-100

http://www.cbot.com
http://www.eurexchange.com
http://www.euronext.com

convfactor

For Japanese Government Bonds, verify the output of convfactor by
comparing the output against the quotations provided by the Tokyo
Stock Exchange (http://www.tse.or.jp/english/).

Examples Calculate CF, given the following RefDate, Maturity, and CouponRate:

RefDate = {'1-Dec-2002';

'1-Mar-2003';

'1-Jun-2003';

'1-Sep-2003';

'1-Dec-2003';

'1-Sep-2003';

'1-Dec-2002';

'1-Jun-2003'};

Maturity = {'15-Nov-2012';

'15-Aug-2012';

'15-Feb-2012';

'15-Feb-2011';

'15-Aug-2011';

'15-Aug-2010';

'15-Aug-2009';

'15-Feb-2010'};

CouponRate = [0.04; 0.04375; 0.04875; 0.05; 0.05; 0.0575; 0.06; 0.065];

CF = convfactor(RefDate, Maturity, CouponRate)

This returns:

CF =
0.8539
0.8858
0.9259
0.9418
0.9403
0.9862

8-101

http://www.tse.or.jp/english/

convfactor

1.0000
1.0266

Calculate cf, given the following RefDate, Maturity, and CouponRate
for a German Bond:

cf = convfactor('3/10/2009','1/04/2018', .04,.06,3)

This returns:

cf =

0.8659

References Burghardt, G., T. Belton, M. Lane, and J. Papa, The Treasury Bond
Basis, McGraw-Hill, 2005.

Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John
Wiley & Sons, 2002.

See Also tfutbyprice | tfutbyyield | tfutimprepo | bndfutimprepo |
bndfutprice

How To • “Bond Futures” on page 4-12

8-102

fitFunction

Purpose Custom fit interest-rate curve object to bond market data

Class @IRFunctionCurve

Syntax CurveObj = IRFunctionCurve.fitFunction(Type, Settle,
FunctionHandle, Instruments, IRFitOptionsObj)
CurveObj = IRFunctionCurve.fitFunction(Type, Settle,
FunctionHandle, Instruments, IRFitOptionsObj, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve for a bond: zero,
forward, or discount.

Settle Scalar or column vector of settlement dates.
Settle must be earlier than Maturity.

FunctionHandle Function handle that defines the interest-rate
curve. The function handle takes two numeric
vectors (time-to-maturity and a vector of function
coefficients) and returns one numeric output
(interest rate or discount factor). For more
information on defining a function handle, see
the MATLAB Programming Fundamentals
documentation.

Instruments N-by-4 data matrix for Instruments where the
first column is Settle date, the second column
is Maturity, the third column is the clean price,
and the fourth column is a CouponRate for the
bond.

IRFitOptionsObj Object constructed from IRFitOptions.

8-103

fitFunction

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRFunctionCurve
object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis of the bond. A scalar
of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

8-104

fitFunction

• 13 = BUS/252

For more information, see basis.

Instrument
Parameters

For each bond Instrument, you can specify the following additional
instrument parameters as parameter/value pairs by prepending the
word Instrument to the parameter field. For example, prepending
InstrumentBasis distinguishes a bond instrument’s Basis value from
the curve’s Basis value.

CouponRate (Optional) Decimal number indicating the
annual percentage rate used to determine the
coupons payable on a bond.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

8-105

fitFunction

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when an instrument was
issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

8-106

fitFunction

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

Face (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify
simple interest for a bond by specifying the InstrumentPeriod value
as 0. If InstrumentBasis and InstrumentPeriod are not specified
for a bond, the following default values are used: Basis is 0 (act/act)
and Period is 2.

Description CurveObj = IRFunctionCurve.fitFunction(Type, Settle,
FunctionHandle, Instruments, IRFitOptionsObj, 'Parameter1',
Value1, 'Parameter2', Value2, ...) fits a bond to a custom
fitting function. You must enter the optional arguments for Basis and
Compounding as parameter/value pairs.

Examples Settle = repmat(datenum('30-Apr-2008'),[6 1]);

Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...

datenum('07-Mar-2013');datenum('07-Sep-2016');...

datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];

CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];

Instruments = [Settle Maturity CleanPrice CouponRate];

CurveSettle = datenum('30-Apr-2008');

8-107

fitFunction

OptOptions = optimset('lsqnonlin');

OptOptions = optimset(OptOptions,'display','iter');

functionHandle = @(t,theta) polyval(theta,t);

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...

functionHandle,Instruments, ...

IRFitOptions([.05 .05 .05],'FitType','price',...

'OptOptions',OptOptions));

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 4 38036.7 4.92e+004

1 8 38036.7 10 4.92e+004 0

2 12 38036.7 2.5 4.92e+004 0

3 16 38036.7 0.625 4.92e+004 0

4 20 38036.7 0.15625 4.92e+004 0

5 24 30741.5 0.0390625 1.72e+005 0

6 28 30741.5 0.078125 1.72e+005 0

7 32 30741.5 0.0195312 1.72e+005 0

8 36 28713.6 0.00488281 2.33e+005 0

9 40 20323.3 0.00976562 9.47e+005 0

10 44 20323.3 0.0195312 9.47e+005 0

11 48 20323.3 0.00488281 9.47e+005 0

12 52 20323.3 0.0012207 9.47e+005 0

13 56 19698.8 0.000305176 1.08e+006 0

14 60 17493 0.000610352 7e+006 0

15 64 17493 0.0012207 7e+006 0

16 68 17493 0.000305176 7e+006 0

17 72 15455.1 7.62939e-005 2.25e+007 0

18 76 15455.1 0.000177558 2.25e+007 0

19 80 13317.1 3.8147e-005 3.18e+007 0

20 84 12867.9 7.62939e-005 7.84e+007 0

21 88 11779.8 7.62939e-005 7.58e+006 0

22 92 11747.6 0.000152588 1.46e+005 0

23 96 11720.9 0.000305176 2.48e+005 0

24 100 11667.2 0.000610352 1.48e+005 0

25 104 11558.5 0.0012207 4.47e+005 0

8-108

fitFunction

26 108 11335.4 0.00244141 1.58e+005 0

27 112 10864 0.00488281 1.61e+005 0

28 116 9797.68 0.00976562 6.85e+005 0

29 120 6884.03 0.0195312 5.79e+005 0

30 124 6884.03 0.037498 5.79e+005 0

31 128 3216.51 0.00937449 1.75e+006 0

32 132 607.317 0.018749 2.94e+006 0

33 136 12.7284 0.0253662 3e+006 0

34 140 0.0760939 0.00153457 4.88e+004 0

35 144 0.0731652 3.58678e-006 24.6 0

36 148 0.0731652 6.04329e-008 0.0213 0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the selected value of the function tolerance.

How To • “@IRFitOptions” on page A-10

• “@IRFunctionCurve” on page A-12

8-109

fitNelsonSiegel

Purpose Fit Nelson-Siegel function to bond market data

Class @IRFunctionCurve

Syntax CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle, Instruments)
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle, Instruments,
'Parameter1', Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve for a bond: zero or
forward.

Settle Scalar or column vector of settlement dates.

Instruments N-by-4 data matrix for Instruments where the
first column is Settle date, the second column
is Maturity, the third column is the clean price,
and the fourth column is a CouponRate for the
bond.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRFunctionCurve
object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

8-110

fitNelsonSiegel

Basis (Optional) Day-count basis of the interest-rate
curve. A scalar of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

IRFitOptionsObj (Optional) Object constructed from
IRFitOptions.

Instrument
Parameters

For each bond Instrument, you can specify the following additional
instrument parameters as parameter/value pairs by prepending the
word Instrument to the parameter field. For example, prepending
InstrumentBasis distinguishes a bond instrument’s Basis value from
the curve’s Basis value.

8-111

fitNelsonSiegel

CouponRate (Optional) Decimal number indicating the
annual percentage rate used to determine the
coupons payable on a bond.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

8-112

fitNelsonSiegel

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when an instrument was
issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

Face (Optional) Face or par value. Default = 100.

8-113

fitNelsonSiegel

Note When using Instrument parameter/value pairs, you can specify
simple for a bond by specifying the InstrumentPeriod value as 0. If
InstrumentBasis and InstrumentPeriod are not specified for a bond,
the following default values are used: Basis is 0 (act/act) and Period
is 2.

Description CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2,
...) fits a Nelson-Siegel function to market data for a bond. You
must enter the optional arguments for Basis, Compounding, and
IRFitOptionsObj as parameter/value pairs.

Examples Settle = repmat(datenum('30-Apr-2008'),[6 1]);

Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...

datenum('07-Mar-2013');datenum('07-Sep-2016');...

datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];

CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];

Instruments = [Settle Maturity CleanPrice CouponRate];

PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');

Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',datenum('30-Apr-2008'),Instruments);

To create the plot:

plot(PlottingPoints,NSModel.getParYields(PlottingPoints),'r')
hold on
scatter(Maturity,Yield,'black')
datetick('x')

8-114

fitNelsonSiegel

How To • “@IRFitOptions” on page A-10

• “@IRFunctionCurve” on page A-12

8-115

fitSmoothingSpline

Purpose Fit smoothing spline to bond market data

Class @IRFunctionCurve

Syntax CurveObj = IRFunctionCurve.fitSmoothingSpline(Type, Settle,
Instruments, Lambdafun)
CurveObj = IRFunctionCurve.fitSmoothingSpline(Type, Settle,
Instruments, Lambdafun, 'Parameter1', Value1, 'Parameter2',
Value2, ...)

Arguments
Note You must have a license for Curve Fitting Toolbox software to
use the fitSmoothingSpline method.

Type Type of interest-rate curve for a bond: forward.

Settle Scalar or column vector of settlement dates.

Instruments N-by-4 data matrix for Instruments where the
first column is Settle date, the second column is
Maturity, the third column is the clean price, and the
fourth column is a CouponRate for the bond.

Lambdafun Penalty function that takes as its input time and
returns a penalty value. Use a function handle to
support the penalty function. The function handle for
the penalty function which takes one numeric input
(time-to-maturity) and returns one numeric output
(penalty to be applied to the curvature of the spline).
For more information on defining a function handle,
see the MATLAB Programming Fundamentals
documentation.

8-116

fitSmoothingSpline

Note The smoothing spline represents the forward
curve. The spline is penalized for curvature by
specifying a penalty function. This fit may only be
done with a FitType of DurationWeightedPrice.

Knots (Optional) Vector of knot locations
(times-to-maturity); by default, knots is set to
be a vector comprised of 0 and the time to maturity
of all input instruments.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRFunctionCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis of the interest-rate curve.
A scalar of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

8-117

fitSmoothingSpline

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Instrument
Parameters

For each bond Instrument, you can specify the following additional
instrument parameters as parameter/value pairs by prepending the
word Instrument to the parameter field. For example, prepending
InstrumentBasis distinguishes a bond instrument’s Basis value from
the curve’s Basis value.

CouponRate (Optional) Decimal number indicating the
annual percentage rate used to determine the
coupons payable on a bond.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

8-118

fitSmoothingSpline

Basis (Optional) Day-count basis of the bond. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

8-119

fitSmoothingSpline

IssueDate (Optional) Date when an instrument was
issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

Face (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify
simple interest for a bond by specifying the InstrumentPeriod value
as 0. If InstrumentBasis and InstrumentPeriod are not specified
for a bond, the following default values are used: Basis is 0 (act/act)
and Period is 2.

Description Fcurve = IRFunctionCurve.fitSmoothingSpline(Type, Settle,
Instruments, Lambdafun, 'Parameter1', Value1, 'Parameter2',
Value2, ...) fits a smoothing spline to market data for a bond. You

8-120

fitSmoothingSpline

must enter the optional arguments for Basis, Compounding, and Knots
as parameter/value pairs.

Examples Settle = repmat(datenum('30-Apr-2008'),[6 1]);

Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...

datenum('07-Mar-2013');datenum('07-Sep-2016');...

datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];

CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];

Instruments = [Settle Maturity CleanPrice CouponRate];

PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');

Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

SmoothingModel = IRFunctionCurve.fitSmoothingSpline('Forward',datenum('30-Apr-2008'),...

Instruments,@(t) 1000);

To create the plot:

plot(PlottingPoints,SmoothingModel.getParYields(PlottingPoints),'b')

hold on

scatter(Maturity,Yield,'black')

datetick('x')

8-121

fitSmoothingSpline

How To • “@IRFunctionCurve” on page A-12

8-122

fitSvensson

Purpose Fit Svensson function to bond market data

Class @IRFunctionCurve

Syntax CurveObj = IRFunctionCurve.fitSvensson(Type, Settle,
Instruments)
CurveObj = IRFunctionCurve.fitSvensson(Type, Settle,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve for a bond: zero or
forward.

Settle Scalar or column vector of settlement dates.

Instruments N-by-4 data matrix for Instruments where the
first column is Settle date, the second column
is Maturity, the third column is the clean price,
and the fourth column is a CouponRate for the
bond.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRFunctionCurve
object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

8-123

fitSvensson

Basis (Optional) Day-count basis of the interest-rate
curve. A scalar of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

IRFitOptionsObj (Optional) Object constructed from
IRFitOptions.

Instrument
Parameters

For each bond Instrument, you can specify the following additional
instrument parameters as parameter/value pairs by prepending the
word Instrument to the parameter field. For example, prepending
InstrumentBasis distinguishes a bond instrument’s Basis value from
the curve’s Basis value.

8-124

fitSvensson

CouponRate (Optional) Decimal number indicating the
annual percentage rate used to determine the
coupons payable on a bond.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2
(default), 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

8-125

fitSvensson

EndMonthRule (Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

IssueDate (Optional) Date when an instrument was
issued.

FirstCouponDate (Optional) Date when a bond makes its
first coupon payment; used when bond has
an irregular first coupon period. When
FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes
precedence in determining the coupon
payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the
maturity date; used when bond has an irregular
last coupon period. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond.
The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where
it falls, and is followed only by the bond’s
maturity cash flow date. If you do not specify a
LastCouponDate, the cash flow payment dates
are determined from other inputs.

Face (Optional) Face or par value. Default = 100.

8-126

fitSvensson

Note When using Instrument parameter/value pairs, you can specify
simple interest for a bond by specifying the InstrumentPeriod value
as 0. If InstrumentBasis and InstrumentPeriod are not specified
for a bond, the following default values are used: Basis is 0 (act/act)
and Period is 2.

Description CurveObj = IRFunctionCurve.fitSvensson(Type, Settle,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2,
...) fits the Svensson function to bond market data. You must enter
the optional arguments for Basis, Compounding, and IRFitOptionsObj
as parameter/value pairs.

Examples Settle = repmat(datenum('30-Apr-2008'),[6 1]);

Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...

datenum('07-Mar-2013');datenum('07-Sep-2016');...

datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];

CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];

Instruments = [Settle Maturity CleanPrice CouponRate];

PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');

Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',datenum('30-Apr-2008'),Instruments);

To create a plot:

plot(PlottingPoints,SvenssonModel.getParYields(PlottingPoints),'g')

hold on

scatter(Maturity,Yield,'black')

datetick('x')

8-127

fitSvensson

How To • “@IRFitOptions” on page A-10

• “@IRFunctionCurve” on page A-12

8-128

getDiscountFactors

Purpose Get discount factors for input dates for IRDataCurve

Class @IRDataCurve

Syntax F = getDiscountFactors(CurveObj, InpDates)

Arguments CurveObj Interest-rate curve object that is constructed using
IRDataCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Description F = getDiscountFactors(CurveObj, InpDates) returns discount
factors for the input dates.

Examples Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data);

irdc.getDiscountFactors(today+30:30:today+720)

ans =

0.9986

0.9971

0.9956

0.9940

0.9924

0.9907

0.9890

0.9873

0.9855

0.9836

0.9817

0.9798

0.9778

0.9757

8-129

getDiscountFactors

0.9736

0.9715

0.9693

0.9671

0.9649

0.9626

0.9602

0.9578

0.9554

0.9529

How To • “@IRDataCurve” on page A-7

8-130

getDiscountFactors

Purpose Get discount factors for input dates for IRFunctionCurve

Class @IRFunctionCurve

Syntax F = getDiscountFactors(CurveObj, InpDates)

Arguments CurveObj Interest-rate curve object that is constructed using
the IRFunctionCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Description F = getDiscountFactors(CurveObj, InpDates) returns discount
factors for the input dates.

Examples irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));

irfc.getDiscountFactors(today+30:30:today+720)

ans =

0.9984

0.9967

0.9950

0.9933

0.9916

0.9899

0.9881

0.9864

0.9846

0.9828

0.9810

0.9792

0.9773

0.9755

0.9736

0.9717

8-131

getDiscountFactors

0.9698

0.9679

0.9660

0.9641

0.9621

0.9602

0.9582

0.9562

How To • “@IRFunctionCurve” on page A-12

8-132

getForwardRates

Purpose Get forward rates for input dates for IRDataCurve

Class @IRDataCurve

Syntax F = getForwardRates(CurveObj, InpDates)
F = getforwardrates(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRDataCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for forward rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis values for the forward
rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

8-133

getForwardRates

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getForwardRates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...) returns forward rates for the
input dates. You must enter the optional arguments for Basis and
Compounding as parameter/value pairs.

Examples Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data);

irdc.getForwardRates(today+30:30:today+720)

ans =

0.0174

0.0180

0.0187

0.0193

0.0199

0.0205

0.0212

8-134

getForwardRates

0.0218

0.0224

0.0230

0.0237

0.0243

0.0249

0.0255

0.0262

0.0268

0.0274

0.0280

0.0287

0.0293

0.0299

0.0305

0.0312

0.0318

How To • “@IRDataCurve” on page A-7

8-135

getForwardRates

Purpose Get forward rates for input dates for IRFunctionCurve

Class @IRFunctionCurve

Syntax F = getForwardRates(CurveObj, InpDates)
F = getforwardrates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRFunctionCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the forward rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis for the forward rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

8-136

getForwardRates

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getForwardRates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...) returns forward rates for the
input dates. You must enter the optional arguments for Basis and
Compounding as parameter/value pairs.

Examples irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));

irfc.getForwardRates(today+30:30:today+720)

ans =

0.0202

0.0205

0.0207

0.0210

0.0212

0.0215

0.0217

0.0219

0.0222

0.0224

0.0226

8-137

getForwardRates

0.0229

0.0231

0.0233

0.0235

0.0238

0.0240

0.0242

0.0244

0.0247

0.0249

0.0251

0.0253

0.0255

How To • “@IRFunctionCurve” on page A-12

8-138

getParYields

Purpose Get par yields for input dates for IRDataCurve

Class @IRDataCurve

Syntax F = getParYields(CurveObj, InpDates)
F = getParYields(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRDataCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the par yield rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis values for the par yield
rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

8-139

getParYields

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getParYields(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...) returns par yields for the input dates.
You must enter the optional arguments for Basis and Compounding
as parameter/value pairs.

Examples Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data);

irdc.getParYields(today+30:30:today+720)ans =

0.0174

0.0179

0.0181

0.0185

0.0187

0.0191

0.0194

0.0195

8-140

getParYields

0.0199

0.0202

0.0205

0.0208

0.0212

0.0215

0.0218

0.0221

0.0224

0.0228

0.0231

0.0233

0.0236

0.0239

0.0242

0.0245

How To • “@IRDataCurve” on page A-7

8-141

getParYields

Purpose Get par yields for input dates for IRFunctionCurve

Class @IRFunctionCurve

Syntax F = getParYields(CurveObj, InpDates)
F = getParYields(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRFunctionCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for par yield rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis values for par yield
rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

8-142

getParYields

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getParYields(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...) returns par yields for the input dates.
You must enter the optional arguments for Basis and Compounding
as parameter/value pairs.

Examples irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));

irfc.getParYields(today+30:30:today+720)

ans =

0.0202

0.0205

0.0205

0.0207

0.0207

0.0209

0.0210

0.0209

0.0211

8-143

getParYields

0.0212

0.0213

0.0214

0.0216

0.0217

0.0218

0.0220

0.0220

0.0222

0.0223

0.0223

0.0225

0.0226

0.0227

0.0228

How To • “@IRFunctionCurve” on page A-12

8-144

getZeroRates

Purpose Get zero rates for input dates for IRDataCurve

Class @IRDataCurve

Syntax F = getZeroRates(CurveObj, InpDates)
F = getZeroRates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRDataCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for zero rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis values for zero rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

8-145

getZeroRates

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getZeroRates(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...) returns zero rates for the input dates.
You must enter the optional arguments for Basis and Compounding
as parameter/value pairs.

Examples Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data);

irdc.getZeroRates(today+30:30:today+720)

ans =

0.0174

0.0177

0.0180

0.0183

0.0187

0.0190

0.0193

0.0196

0.0199

8-146

getZeroRates

0.0202

0.0205

0.0208

0.0212

0.0215

0.0218

0.0221

0.0224

0.0227

0.0230

0.0233

0.0237

0.0240

0.0243

0.0246

How To • “@IRDataCurve” on page A-7

8-147

getZeroRates

Purpose Get zero rates for input dates for IRFunctionCurve

Class @IRFunctionCurve

Syntax F = getZeroRates(CurveObj, InpDates)
F = getZeroRates(CurveObj, InpDates, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments CurveObj Interest-rate curve object that is constructed using
IRFunctionCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Compounding (Optional) Scalar that sets the compounding
frequency per year for zero rates are:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis (Optional) Day-count basis value for zero rates:

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

8-148

getZeroRates

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description F = getZeroRates(CurveObj, InpDates, 'Parameter1', Value1,
'Parameter2', Value2, ...) returns zero rates for the input dates.
You must enter the optional arguments for Basis and Compounding
as parameter/value pairs.

Examples irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));

irfc.getZeroRates(today+30:30:today+720)

ans =

0.0202

0.0204

0.0205

0.0206

0.0207

0.0209

0.0210

0.0211

0.0212

8-149

getZeroRates

0.0213

0.0214

0.0216

0.0217

0.0218

0.0219

0.0220

0.0221

0.0223

0.0224

0.0225

0.0226

0.0227

0.0228

0.0229

How To • “@IRFunctionCurve” on page A-12

8-150

IRBootstrapOptions

Purpose Construct specific options for bootstrapping interest-rate curve object

Class @IRBootstrapOptions

Syntax mybootoptions = IRBootstrapOptions('Param1', Value1)

Arguments ConvexityAdjustment (Optional) Controls the convexity
adjustment to interest-rate futures.
This can be specified as a function
handle that takes one numeric
input (time-to-maturity) and
returns one numeric output,
ConvexityAdjustment. For
more information on defining a
function handle, see the MATLAB
Programming Fundamentals
documentation.

Alternatively, you can define
ConvexityAdjustment as an N-by-1
vector of values, where N is the number
of interest-rate futures.

In either case, the
ConvexityAdjustment is subtracted
from the futures rate.

Description mybootoptions = IRBootstrapOptions('Param1', Value1)
constructs an IRBootstrapOptionsObj structure. The
IRBootstrapOptionsObj is used with the bootstrap method.

Examples mybootoptions = IRBootstrapOptions('ConvexityAdjustment',repmat(.005,10,1))

How To • “@IRDataCurve” on page A-7

8-151

IRDataCurve

Purpose Construct interest-rate curve object from dates and data

Class @IRDataCurve

Syntax CurveObj = IRDataCurve(Type, Settle)
CurveObj = IRDataCurve(Type, Settle, Dates, Data, 'Parameter1',
Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve. Acceptable values are
forward, zero, or discount.

Settle Scalar of settlement dates.

Dates (Optional) Dates corresponding to rate data.

Data (Optional) Interest-rate data for the curve object.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRDataCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

8-152

IRDataCurve

Basis (Optional) Day-count basis of the interest-rate
curve. A scalar of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

InterpMethod (Optional) Values are:

• 'linear'— Linear interpolation (default).

• 'constant' — Piecewise constant
interpolation.

• 'pchip' — Piecewise cubic Hermite
interpolation.

• 'spline'— Cubic spline interpolation.

8-153

IRDataCurve

Description CurveObj = IRDataCurve(Type, Settle, Dates, Data,
'Parameter1', Value1, 'Parameter2', Value2, ...) constructs
an interest-rate curve with the optionally specified Dates and Data.
You must enter the optional arguments for Basis, Compounding, and
InterpMethod as parameter/value pairs.

Alternatively, an IRDataCurve object can be bootstrapped from market
data using the bootstrap method.

After an IRDataCurve curve object is constructed, you can use the
following methods to determine the forward rates, zero rates, and
discount factors. In addition, you can use the toRateSpec method to
convert the interest-rate curve object to a RateSpec structure.

Method Description

getForwardRates Returns forward rates for input dates.

getZeroRates Returns zero rates for input dates.

getDiscountFactors Returns discount factors for input dates.

getParYields Returns par yields for input dates.

toRateSpec Converts to be a RateSpec object; this
structure is identical to the RateSpec
produced by the Financial Derivatives
Toolbox function intenvset.

bootstrap Bootstraps an interest rate curve from
market data.

Examples Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Zero',today,Dates,Data)

irdc =

Properties:

8-154

IRDataCurve

Dates: [8x1 double]

Data: [8x1 double]

InterpMethod: 'linear'

Type: 'Zero'

Settle: 733599

Compounding: 2

Basis: 0

How To • “@IRCurve” on page A-4

8-155

IRFitOptions

Purpose Construct specific options for fitting interest-rate curve object

Class @IRFitOptions

Syntax myfitoptions = IRFitOptions(InitialGuess)
myfitoptions = IRFitOptions(InitialGuess, 'Parameter1', Value1)

Arguments InitialGuess Initial guess for the parameters of the curve
function. Vector of values for the starting point
of the optimization.

FitType (Optional) Price, Yield, or
DurationWeightedPrice determines which is
minimized in the curve fitting process. The default
is DurationWeightedPrice.

UpperBound (Optional) Lower bound for the parameters of the
curve function.

LowerBound (Optional) Upper bound for the parameters of the
curve function.

OptOptions (Optional) Optimization structure based on
the output from the Optimization Toolbox
function optimset. This optimization structure is
evaluated by lsqnonlin.

Description myfitoptions = IRFitOptions('Param1', Value1) constructs the
IRFitOptions structure with an initial guess or with an initial guess
and bounds. You must enter the optional arguments for FitType,
UpperBound, LowerBound, and OptOptions as parameter/value pairs.

Note IRFitOptions constructor must be used with fitFunction
method when building a custom fitting function.

8-156

IRFitOptions

Examples myfitoptions = IRFitOptions([7 2 1 0],'FitType','yield')

myfitoptions =

Properties:
FitType: 'yield'

InitialGuess: [7 2 1 0]
UpperBound: []
LowerBound: []
OptOptions: []

How To • “@IRFunctionCurve” on page A-12

8-157

IRFunctionCurve

Purpose Construct interest-rate curve object from function handle or function
and fit to market data

Class @IRFunctionCurve

Syntax CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle)
CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle,
'Parameter1', Value1, 'Parameter2', Value2, ...)

Arguments Type Type of interest-rate curve: zero, forward, or
discount.

Settle Scalar of settlement dates.

FunctionHandle Function handle that defines the interest-rate
curve. The function handle requires one numeric
input (time-to-maturity) and returns one numeric
output (interest rate or discount factor). For
more information on defining a function handle,
see the MATLAB Programming Fundamentals
documentation.

Compounding (Optional) Scalar that sets the compounding
frequency per year for the IRFunctionCurve
object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

8-158

IRFunctionCurve

• 12 = Monthly compounding

Basis (Optional) Day-count basis of the bond. A scalar
of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

Description CurveObj = IRFunctionCurve(Type, Settle, FunctionHandle,
'Parameter1', Value1, 'Parameter2', Value2, ...) constructs
an interest-rate curve object directly by specifying a function handle.
You must enter the optional arguments for Basis and Compounding
as parameter/value pairs.

8-159

IRFunctionCurve

After you use the IRFunctionCurve constructor to create an
IRFunctionCurve object, you can fit the bond using the following
methods.

Method Description

getForwardRates Returns forward rates for input dates.

getZeroRates Returns zero rates for input dates.

getDiscountFactors Returns discount factors for input
dates.

getParYields Returns par yields for input dates.

toRateSpec Converts to be a RateSpec object.

This RateSpec structure is identical
to the RateSpec produced by the
Financial Derivatives Toolbox
function intenvset.

Alternatively, you can construct an IRFunctionCurve object using the
following static methods.

Static Method Description

fitNelsonSiegel Fits a Nelson-Siegel function to
market data.

fitSvensson Fits a Svensson function to market
data.

fitSmoothingSpline Fits a smoothing spline function to
market data.

fitFunction Fits a custom function to market data.

Examples irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t))

irfc =

8-160

IRFunctionCurve

Properties:

FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)

Type: 'Forward'

Settle: 733599

Compounding: 2

Basis: 0

How To • “@IRCurve” on page A-4

8-161

liborduration

Purpose Duration of LIBOR-based interest-rate swap

Syntax [PayFixDuration GetFixDuration] = liborduration(SwapFixRate,
Tenor, Settle)

Arguments SwapFixRate Scalar or column vector of swap fixed rates in
decimal.

Tenor Scalar or column vector indicating life of the swap in
years. Fractional numbers are rounded upward.

Settle Scalar or column vector of settlement dates.

Description [PayFixDuration GetFixDuration] =
liborduration(SwapFixRate, Tenor, Settle) computes the
duration of LIBOR-based interest-rate swaps.

PayFixDuration is the modified duration, in years, realized when
entering pay-fix side of the swap.

GetFixDuration is the modified duration, in years, realized when
entering receive-fix side of the swap.

Examples Given the data

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

compute the swap durations.

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...

Tenor, Settle)

PayFixDuration =

8-162

liborduration

-4.7567

GetFixDuration =

4.7567

See Also liborfloat2fixed | liborprice

8-163

liborfloat2fixed

Purpose Compute par fixed-rate of swap given 3-month LIBOR data

Syntax [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or
forward rate agreement data. (A forward rate
agreement stipulates that a certain interest
rate applies to a certain principal amount for
a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote]. The
floating rate is assumed to compound quarterly
and to accrue on an actual/360 basis.

Settle Settlement date of the swap. Scalar.

Tenor Life of the swap. Scalar.

StartDate (Optional) Scalar value to denote reference
date for valuation of (forward) swap. This in
effect allows forward swap valuation. Default
= Settle.

Interpolation (Optional) Interpolation method to determine
applicable forward rate for months when
no Eurodollar data is available. Default is
'linear' or 1. Other possible values are
'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes
whether futures/forward convexity adjustment
is required. Pertains to forward rate
adjustments when those rates are taken from
Eurodollar futures data.

8-164

liborfloat2fixed

RateParam (Optional) Short-rate model’s parameters
(Hull-White) [a S], where the short-rate
process is:

dr t ar dt Sdz= () −⎡⎣ ⎤⎦ + .

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If
on, the routine does an automatic a convexity
adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or
frequency of payment on the fixed side. Also,
the reset frequency. Default = 4 (quarterly).
Other values are 1, 2, and 12.

FixedBasis (Optional) Scalar value. Basis of the fixed side.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

8-165

liborfloat2fixed

For more information, see basis.

Description [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis) computes forward rates, dates, and
the swap fixed rate.

FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate

• Settle: Start date

• Maturity: End date

• Period: Frequency of payment

• Basis: Accrual basis

ForwardDates are dates corresponding to ForwardRates (all third
Wednesdays of the month, spread 3 months apart). The first element is
the third Wednesday immediately after Settle.

ForwardRates are forward rates corresponding to the forward dates,
quarterly compounded, and on the actual/360 basis.

Note To preserve input integrity, Tenor is rounded upward to the
closest integer. Currently traded tenors are 2, 5, and 10 years.

The function assumes that floating-rate observations occur quarterly
on the third Wednesday of a delivery month. The first delivery month
is the month of the first third Wednesday after Settle. Floating-side
payments occur on the third-month anniversaries of observation dates.

8-166

liborfloat2fixed

Examples Use the supplied EDdata.xls file as input to a liborfloat2fixed
computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

FixedSpec =

Coupon: 0.0222
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =

0.0177
0.0166
0.0170
0.0188
0.0214
0.0248

8-167

liborfloat2fixed

0.0279
0.0305

See Also liborduration | liborprice

8-168

liborprice

Purpose Price swap given swap rate

Syntax Price = liborprice(ThreeMonthRates, Settle, Tenor,
SwapRate, StartDate, Interpolation, ConvexAdj, RateParam,
InArrears, Sigma, FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or
forward rate agreement data. (A forward rate
agreement stipulates that a certain interest
rate applies to a certain principal amount for
a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote].
The floating rate is assumed to compound
quarterly and to accrue on an actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

SwapRate Swap rate in decimal.

StartDate (Optional) Scalar value to denote reference
date for valuation of (forward) swap. This in
effect allows forward swap valuation. Default
= Settle.

Interpolation (Optional) Interpolation method to determine
applicable forward rate for months when
no Eurodollar data is available. Default is
'linear' or 1. Other possible values are
'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes
whether futures/forward convexity adjustment
is required. Pertains to forward rate
adjustments when those rates are taken from
Eurodollar futures data.

8-169

liborprice

RateParam (Optional) Short-rate model’s parameters
(Hull-White) [a S], where the short-rate
process is:

dr t ar dt Sdz= () −⎡⎣ ⎤⎦ + .

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If
on, the routine does an automatic convexity
adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or
frequency of payment on the fixed side. Also,
the reset frequency. Default = 4 (quarterly).
Other values are 1, 2, and 12.

FixedBasis (Optional) Scalar value. Basis of the fixed side.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

8-170

liborprice

For more information, see basis.

Description Price = liborprice(ThreeMonthRates, Settle, Tenor,
SwapRate, StartDate, Interpolation, ConvexAdj, RateParam,
InArrears, Sigma, FixedCompound, FixedBasis) computes the
price per $100 notional value of a swap given the swap rate. A positive
result indicates that fixed side is more valuable than the floating side.

Price is the present value of the difference between floating and
fixed-rate sides of the swap per $100 notional.

Examples This example shows that a swap paying the par swap rate has a value
of 0.

Load the input data.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

Compute the fixed rate from the Eurodollar data.

FixedSpec = liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

Coupon: 0.0222
Settle: '16-Oct-2002'
Maturity: '16-Oct-2004'
Period: 4
Basis: 1

Compute the price of a par swap.

Price = liborprice(EDFutData(:,1:3), Settle, Tenor, FixedSpec.Coupon)

Price =

4.1633e-015

8-171

liborprice

MATLAB computes a value for Price that is effectively equal to 0.

See Also liborduration | liborfloat2fixed

8-172

mbscfamounts

Purpose Cash flow and time mapping for mortgage pool

Syntax [CFlowAmounts, CFlowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date
string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default =
GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default
= 0. If you input a customized prepayment
matrix, set PrepaySpeed to [].

PrepayMatrix (Optional) Used only when PrepaySpeed is
unspecified. Customized prepayment vector. A
NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS)-by-1 vectors.

8-173

mbscfamounts

Description [CFlowAmounts, CFLowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes cash
flows between settle and maturity dates, the corresponding time factors
in months from settle, and the mortgage factor (the fraction of loan
principal outstanding).

CFlowAmounts is a vector of cash flows starting from Settle through
end of the last month (Maturity).

CFlowDates indicates when cash flows occur, including at Settle. A
negative number at Settle indicates accrued interest is due.

TFactors is a vector of times in months from Settle, corresponding to
each cash flow.

Factors is a vector of mortgage factors (the fraction of the balance still
outstanding at the end of each month).

Examples Example 1. Given a mortgage with the following characteristics,
compute the cash flow amounts and dates, the time factors, and the
mortgage factors.

Settle = datenum('17-April-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
PrepaySpeed = 100;

[CFlowAmounts, CFLowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

The result is contained in four 334-element row vectors.

8-174

mbscfamounts

Example 2. Given a portfolio of mortgage-backed securities, use
mbscfamounts to compute the cash flows and other factors from the
portfolio.

Settle = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = [0.075; 0.07875; 0.0775];

Delay = 14;

PrepaySpeed = 100;

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...

mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...

CouponRate, Delay, PrepaySpeed)

Each output is a 3-by-361 element matrix padded with NaNs wherever
elements are missing.

References [1] PSA Uniform Practices, SF-4

8-175

mbsconvp

Purpose Convexity of mortgage pool given price

Syntax Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date
string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default =
GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is
unspecified. Customized prepayment vector. A
NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

8-176

mbsconvp

Description Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)
computes mortgage-backed security convexity, given time information,
price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the convexity of the security.

Price = 101;

Settle = '15-Apr-2002';

Maturity = '1 Jan 2030';

IssueDate = '1-Jan-2000';

GrossRate = 0.08125;

CouponRate = 0.075;

Delay = 14;

Speed = 100;

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,...

GrossRate, CouponRate, Delay, Speed)

Convexity =

71.6299

References [1] PSA Uniform Practices, SF-49

See Also mbsconvy | mbsdurp | mbsdury

8-177

mbsconvy

Purpose Convexity of mortgage pool given yield

Syntax Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is
unspecified. Customized prepayment vector. A
NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

8-178

mbsconvy

computes mortgage-backed security convexity, given time information,
semiannual mortgage yield, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the convexity of the security.

Yield = 0.07125;

Settle = '15-Apr-2002';

Maturity = '1 Jan 2030';

IssueDate = '1-Jan-2000';

GrossRate = 0.08125;

Speed = 100;

CouponRate = 0.075;

Delay = 14;

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ...

GrossRate, CouponRate, Delay, Speed)

Convexity =

72.8263

References [1] PSA Uniform Practices, SF-49

See Also mbsconvp | mbsdurp | mbsdury

8-179

mbsdurp

Purpose Duration of mortgage pool given price

Syntax [YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is
unspecified. Customized prepayment vector. A
NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

8-180

mbsdurp

Description [YearDuration, ModDuration] = mbsdurp(Price, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay,
PrepaySpeed, PrepayMatrix) computes the mortgage-backed security
Macaulay (YearDuration) and modified (ModDuration) durations, given
time information, price at settlement, and optionally, a prepayment
model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the Macaulay and modified durations of the security.

Price = 101;

Settle = datenum('15-Apr-2002');

Maturity = datenum('1 Jan 2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = 0.075;;

Delay = 14;

Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.4380

ModDuration =

6.2080

References [1] PSA Uniform Practices, SF-49

8-181

mbsdurp

See Also mbsconvp | mbsconvy | mbsdury

8-182

mbsdury

Purpose Duration of mortgage pool given yield

Syntax [YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is
unspecified. Customized prepayment vector. A
NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [YearDuration, ModDuration] = mbsdurvy(Yield, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay,

8-183

mbsdury

PrepaySpeed, PrepayMatrix) computes the mortgage-backed security
Macaulay (YearDuration) and Modified (ModDuration) durations, given
time information, yield to maturity, and optionally, a prepayment
model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the Macaulay and Modified durations of the security.

Yield = 0.07298413;

Settle = '15-Apr-2002';

Maturity = '1 Jan 2030';

IssueDate = '1-Jan-2000';

GrossRate = 0.08125;

Speed = 100;

CouponRate = 0.075;

Delay = 14;

[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.4380

ModDuration =

6.2080

References [1] PSA Uniform Practices, SF-49

See Also mbsconvp | mbsconvy | mbsdurp

8-184

mbsnoprepay

Purpose End-of-month mortgage cash flows and balances without prepayment

Syntax [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term)

Arguments OriginalBalance Original face value in dollars.

GrossRate Gross coupon rate (including fees), in decimal.

Term Term of the mortgage in months.

All inputs are number of mortgage-backed securities (NMBS)-by-1 vectors.

Description [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term) computes
end-of-month mortgage balance, interest payments, principal payments,
and cash flow payments with zero prepayment rate.

The function returns amortizing cash flows and balances over a
specified term with no prepayment. When the lengths of pass-throughs
are not the same, MATLAB software pads the shorter ones with NaN.

Balance lists the end-of-month balances over the life of the
pass-through.

Interest lists all end-of-month interest payments over the life of the
pass-through.

Payment lists all end-of-month payments over the life of the
pass-through.

Principal lists all scheduled end-of-month principal payments over
the life of the pass-through.

All outputs are Term-by-1 vectors.

Examples Given mortgage pools with the following characteristics, compute an
amortization schedule.

8-185

mbsnoprepay

OriginalBalance = 400000000;

CouponRate = 0.08125;

Term = [357; 355]; % Three- and five-month old mortgage pools.

[Balance, Interest, Payment, Principal] = ...

mbsnoprepay(OriginalBalance, CouponRate, Term);

8-186

mbsoas2price

Purpose Price given option-adjusted spread

Syntax Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.

• Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in
decimal (for example, 0.075).

• Column 3: Compounding of the rates in Column
2. (This is the agency spot rate on the settlement
date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial date number
or date string. Date when option-adjusted spread is
calculated. Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt).

8-187

mbsoas2price

Interpolation Interpolation method. Computes the corresponding
spot rates for the bond’s cash flow. Available
methods are (0) nearest, (1) linear, and (2) cubic
spline. Default = 1. See interp1 for more
information.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each
column corresponds to a mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the clean price of a
pass-through security for each $100 face value of outstanding principal.

Examples Given an option-adjusted spread, a spot curve, and a prepayment
assumption, compute theoretical price of a mortgage pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

8-188

mbsoas2price

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Use compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);

ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Calculate the price from the option-adjusted spread.

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ...

IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...

PrepaySpeed)

8-189

mbsoas2price

Price =

95.0000

95.0000

95.0000

See Also mbsprice2oas | mbsyield2oas | mbsoas2yield

8-190

mbsoas2yield

Purpose Yield given option-adjusted spread

Syntax [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.

• Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in
decimal (for example, 0.075).

• Column 3: Compounding of the rates in
Column 2. (This is the agency spot rate on the
settlement date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial
date number or date string. Date when
option-adjusted spread is calculated. Settle
must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default =
0 (no delay between payment and receipt).

8-191

mbsoas2yield

Interpolation Interpolation method. Computes the
corresponding spot rates for the bond’s cash flow.
Available methods are (0) nearest, (1) linear, and
(2) cubic spline. Default = 1. See interp1 for
more information.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default =
end of month’s CPR. Set PrepaySpeed to [] if
you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each
column corresponds to a mortgage-backed
security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS,
Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay,
Interpolation, PrepaySpeed, PrepayMatrix) computes the
mortgage and bond-equivalent yields of a pass-through security.

MYield is the yield to maturity of the mortgage-backed security (the
mortgage yield). This yield is compounded monthly (12 times per year).
For example:

0.075 (7.5%)

BEMBSYield is the corresponding bond equivalent yield of the
mortgage-backed security. This yield is compounded semiannually (two
times per year). For example:

0.0761 (7.61%)

8-192

mbsoas2yield

Examples Given an option-adjusted spread, a spot curve, and a prepayment
assumption, compute the theoretical yield to maturity of a mortgage
pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);

ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');

8-193

mbsoas2yield

IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the mortgage yield and bond equivalent mortgage yield.

[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ...

Maturity, IssueDate, GrossRate, CouponRate, Delay, ...

Interpolation, PrepaySpeed)

MYield =

0.0802

0.0814

0.0828

BEMBSYield =

0.0816

0.0828

0.0842

See Also mbsprice2oas | mbsyield2oas | mbsoas2price

8-194

mbspassthrough

Purpose Mortgage pool cash flows and balances with prepayment

Syntax [Balance, Payment, Principal, Interest, Prepayment] =
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix)

Arguments OriginalBalance Original balance value in dollars (balance at the
beginning of each TermRemaining).

GrossRate Gross coupon rate (including fees), in decimal.

OriginalTerm Term of the mortgage in months.

TermRemaining (Optional) Number of full months between
settlement and maturity.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0
(no prepayment). Set PrepaySpeed to [] if you
input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed
is unspecified. Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [Balance, Payment, Principal, Interest, Prepayment] =
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix) computes the cash
flow of principal, interest, and prepayment of pass-through securities.

All outputs are TermRemaining-by-1 vectors of end-of-month values.

8-195

mbspassthrough

Balance is the principal balance at end of month.

Payment is the total monthly payment.

Principal is the principal portion of the payment.

Interest is the interest portion of the payment.

Prepayment indicates any unscheduled principal payment.

By default, the securities are seasoned. The applicable CPR
depends upon TermRemaining based on a 30-year prepayment
model (PSA or FHA). You may supply a different CPR vector of size
TermRemaining-by-1.

Examples Compute the cash flows and balances of a 3-month old mortgage pool
with original term of 360 months, assuming a prepayment speed of 100.

OriginalBalance = 100000;

GrossRate = 0.08125;

OriginalTerm = 360;

TermRemaining = 357;

PrepaySpeed = 100;

[Balance, Payment, Principal, Interest, Prepayment] =...

mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,...

TermRemaining, PrepaySpeed);

See Also mbswal

8-196

mbsprice

Purpose Mortgage-backed security price given yield

Syntax [Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each column
corresponds to a mortgage-backed security, and each
row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

8-197

mbsprice

Description [Price, AccrInt] = mbsprice(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix) computes a mortgage-backed security price, given
time information, mortgage yield at settlement, and optionally, a
prepayment model.

All outputs are scalar values.

Price is the clean price for every $100 face value of the securities.

AccrInt is the accrued interest of the mortgage-backed securities.

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the price and the accrued interest due on the
security.

Yield = 0.0725;

Settle = datenum('15-Apr-2002');

Maturity = datenum('1 Jan 2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = 0.075;

Delay = 14;

Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...

GrossRate, CouponRate, Delay, Speed)

Price =

101.3147

AccrInt =

0.2917

8-198

mbsprice

Example 2. Given a portfolio of mortgage-backed securities, compute
the clean prices and accrued interest.

Yield = 0.075;

Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...

'13-Jan-2000']);

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = [0.075; 0.07875; 0.0775; 0.08125];

Delay = 14;

Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...

GrossRate, CouponRate, Delay, Speed)

Price =

99.7085

102.0678

101.2792

104.0175

AccrInt =

0.2500

0.3500

0.3444

0.2708

References [1] PSA Uniform Practices, SF-49

See Also mbsyield

8-199

mbsprice2oas

Purpose Option-adjusted spread given price

Syntax OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.

• Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in
decimal (for example, 0.075).

• Column 3: Compounding of the rates
in Column 2. Values are 1 (annual),
2 (semiannual, 3 (three times per year),
4 (quarterly), 6 (bimonthly), 12 (monthly),
and -1 (continuous).

Price Clean price for every $100 face value of bond
issue.

Settle Settlement date (scalar only). A serial
date number or date string. Date when
option-adjusted spread is calculated. Settle
must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

8-200

mbsprice2oas

Delay (Optional) Delay (in days) between payment
from homeowner and receipt by bondholder.
Default = 0 (no delay between payment and
receipt.

Interpolation Interpolation method. Computes the
corresponding spot rates for the bond’s cash
flow. Available methods are (0) nearest, (1)
linear, and (2) cubic spline. Default = 1. See
interp1 for more information.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default =
end of month’s CPR. Set PrepaySpeed to [] if
you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each
column corresponds to a mortgage-backed
security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the monthly option-adjusted
spread in basis points.

Examples Calculate the option-adjusted spread of a 30-year fixed-rate mortgage
with about a 28-year weighted average maturity remaining, given
assumptions of 0, 50, and 100 PSA prepayments.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;

8-201

mbsprice2oas

datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle= datenum('20-Aug-2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);

ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
Interpolation = 1;

8-202

mbsprice2oas

Compute the option-adjusted spread.

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ...

IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...

PrepaySpeed)

OAS =

26.0502

28.6348

31.2222

See Also mbsoas2price | mbsoas2yield | mbsyield2oas

8-203

mbsprice2speed

Purpose Implied PSA prepayment speeds given price

Syntax [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS)-by-1 vectors.

Description [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] =
mbsprice2speed(Price, Settle, Maturity, IssueDate,
GrossRate, PrepayMatrix, CouponRate, Delay) computes PSA
prepayment speeds implied by pool prices and projected (user-defined)
prepayment vectors. The calculated PSA speed produces the same

8-204

mbsprice2speed

price, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a
mortgage pool with these characteristics and prepayment matrix.

Price = 101;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;

[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsprice2speed(Price,Settle, Maturity, IssueDate, ...
GrossRate, PrepayMatrix, CouponRate, Delay)

ImpSpdOnPrc =

118.5980

ImpSpdOnDur =

118.3946

ImpSpdOnCnv =

8-205

mbsprice2speed

109.5115

References [1] PSA Uniform Practices, SF-49

See Also mbsprice | mbsyield2speed

8-206

mbswal

Purpose Weighted average life of mortgage pool

Compatibility PSA

Syntax WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments Settle Settlement date. A serial date number or date string.
Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt).

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

8-207

mbswal

Description WAL = mbswal(Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes the
weighted average life, in number of years, of a mortgage pool, as
measured from the settlement date.

Examples Given a pass-through security with the following characteristics,
compute the weighted average life of the security.

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, Speed)

WAL =

10.5477

References [1] PSA Uniform Practices, SF-49

See Also mbspassthrough

8-208

mbsyield

Purpose Mortgage-backed security yield given price

Syntax [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,

8-209

mbsyield

PrepayMatrix) computes a mortgage-backed security yield to maturity
and the bond equivalent yield, given time information, price at
settlement, and optionally, a prepayment model.

MYield is the yield to maturity of the mortgage-backed security (the
mortgage yield). This yield is compounded monthly (12 times a year).

BEMBSYield is the corresponding bond equivalent yield of the
mortgage-backed security. This yield is compounded semiannually
(two times a year).

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the mortgage yield and the bond equivalent
yield of the security.

Price = 102;

Settle = '15-Apr-2002';

Maturity = '1 Jan 2030';

IssueDate = '1-Jan-2000';

GrossRate = 0.08125;

CouponRate = 0.075;

Delay = 14;

Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...

IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.0715

BEMBSYield =

0.0725

Example 2. Given a portfolio of mortgage-backed securities, compute
the mortgage yields and the bond equivalent yields.

8-210

mbsyield

Price = 102;

Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...

'13-Jan-2000']);

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = [0.075; 0.07875; 0.0775; 0.08125];

Delay = 14;

Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.0717

0.0751

0.0739

0.0779

BEMBSYield =

0.0728

0.0763

0.0750

0.0791

References [1] PSA Uniform Practices, SF-49

See Also mbsprice

8-211

mbsyield2oas

Purpose Option-adjusted spread given yield

Syntax OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.

• Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in decimal
(for example, 0.075).

• Column 3: Compounding of the rates in Column
2. Values are 1 (annual), 2 (semiannual, 3 (three
times per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date (scalar only). A serial date number
or date string. Date when option-adjusted spread is
calculated. Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date number
or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt).

8-212

mbsyield2oas

Interpolation Interpolation method. Computes the corresponding
spot rates for the bond’s cash flow. Available methods
are (0) nearest, (1) linear, and (2) cubic spline.
Default = 1. See interp1 for more information.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the option-adjusted spread
in basis points.

Examples Calculate the option-adjusted spread of a 30-year, fixed-rate mortgage
pool with about 28-year weighted average maturity left, given
assumptions of 0, 50, and 100 PSA prepayments.

Create a bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

8-213

mbsyield2oas

Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);

ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the yield, and from the yield, compute the option-adjusted
spread.

[mbsyld, beyld] = mbsyield(Price, Settle, ...

Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);

8-214

mbsyield2oas

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...

Maturity, IssueDate, GrossRate, CouponRate, Delay, ...

Interpolation, PrepaySpeed)

OAS =

26.0502

28.6348

31.2222

See Also mbsoas2price | mbsoas2yield | mbsprice2oas

8-215

mbsyield2speed

Purpose Implied PSA prepayment speeds given yield

Syntax [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds
to a mortgage-backed security, and each row
corresponds to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt).

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] =
mbsyield2speed(Yield, Settle, Maturity, IssueDate,
GrossRate, PrepayMatrix, CouponRate, Delay) computes PSA
prepayment speeds implied by pool yields and projected (user-defined)
prepayment vectors. The calculated PSA speed produces the same

8-216

mbsyield2speed

yield, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the pass-through to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a
security with these characteristics and prepayment matrix.

Yield = 0.065;

Settle = datenum('1-Jan-2000');

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

PrepayMatrix = 0.005*ones(360,1);

CouponRate = 0.075;

Delay = 14;

[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ...

mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ...

PrepayMatrix, CouponRate, Delay)

ImpSpdOnYld =

117.7644

ImpSpdOnDur =

116.7436

ImpSpdOnCnv =

8-217

mbsyield2speed

108.3309

References [1] PSA Uniform Practices, SF-49

See Also mbsyield | mbsprice2speed

8-218

psaspeed2default

Purpose Benchmark default

Syntax [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

Arguments DefaultSpeed Annual speed relative to the benchmark. PSA
benchmark = 100.

Description [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed) computes
the benchmark default on the performing balance of mortgage-backed
securities per PSA benchmark speed.

ADRPSA is the PSA default rate, in decimal (360-by-1).

MDRPSA is the PSA monthly default rate, in decimal (360-by-1).

Examples Given a mortgage-backed security with annual speed set at the PSA
default benchmark, compute the default rates.

DefaultSpeed = 100;

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed);

See Also psaspeed2rate

8-219

psaspeed2rate

Purpose Single monthly mortality rate given PSA speed

Syntax [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed)

Arguments PSASpeed Any value > 0 representing the annual speed
relative to the benchmark. PSA benchmark = 100.

Description [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed) calculates vectors
of PSA prepayments, each containing 360 prepayment elements, to
represent the 360 months in a 30-year mortgage pool.

CPRPSA is the PSA conditional prepayment rate, in decimal [360-by-1].

SMMPSA is the PSA single monthly mortality rate, in decimal [360-by-1].

Examples Given a mortgage-backed security with annual speed set at the PSA
default benchmark, compute the prepayment and mortality rates.

PSASpeed = [100 200];

[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed);

View a plot of the output.

psaspeed2rate(PSASpeed)

8-220

psaspeed2rate

See Also psaspeed2default

8-221

stepcpncfamounts

Purpose Cash flow amounts and times for bonds and stepped coupons

Syntax [CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than Maturity.

Maturity Maturity date. A scalar or vector of serial date
numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6,
and 12. Default = 2.

8-222

stepcpncfamounts

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the
portfolio. Default = 100.

8-223

stepcpncfamounts

All arguments must be scalars or number of bonds (NUMBONDS)-by-1
vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRates to
reflect the same number of bonds. However, ConvDates has one less
column than CouponRates. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [CFlows, CDates, CTimes] = stepcpncfamounts(Settle,
Maturity, ConvDates, CouponRates, Period, Basis,
EndMonthRule, Face) returns matrices of cash flow amounts, cash flow
dates, and time factors for a portfolio of NUMBONDS stepped-coupon bonds.

CFlows is a matrix of cash flow amounts. The first entry in each row
vector is a negative number indicating the accrued interest due at
settlement. If no accrued interest is due, the first column is 0.

CDates is a matrix of cash flow dates in serial date number form. At
least two columns are always present, one for settlement and one for
maturity.

CTimes is a matrix of time factors for the SIA semiannual price/yield
conversion.

DiscountFactor = (1 + Yield/2).^(-TFactor)

Time factors are in units of semiannual coupon periods. In computing
time factors, use SIA actual/actual conventions for all time factor
calculations.

8-224

stepcpncfamounts

Note For bonds with fixed coupons, use cfamounts. If you use
a fixed-coupon bond with stepcpncfamounts, MATLAB software
generates an error.

Examples This example generates stepped cash flows for three different bonds,
all paying interest semiannually. Their life span is about 18 to 19
years each:

• Bond A has two conversions, but the first one occurs on the settlement
date and immediately expires.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

• Bond C has three conversions, with some conversion dates not on the
coupon dates. It has the longest maturity. This case illustrates that
only cash flows for full periods after conversion dates are affected,
as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

2.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97))

8.875% First
Conversion
(14-Jun-97))

5.0%

8-225

stepcpncfamounts

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

7.5%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-11)

NaN

Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...

nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'),...

datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'),...

datenum('14-Jun-2005')];

Maturity = [datenum('15-Jun-2010');

datenum('15-Jun-2010');

datenum('15-Jun-2011')];

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.025 0.05 0.0750 0.1];

Basis = 1;

Period = 2;

EndMonthRule = 1;

Face = 100;

Call stepcpncfamounts to compute cash flows and timings.

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...

8-226

stepcpncfamounts

ConvDates, CouponRates);

Visualize the third bond cash flows (2.5 - 5 - 7.5 - 10). (cfplot is
available at /finance/findemos/cfplot.m.)

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')

See Also stepcpnprice | stepcpnyield

8-227

stepcpnprice

Purpose Price bond with stepped coupons

Syntax [Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments

Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than Maturity.

Maturity Maturity date. A scalar or vector of serial date
numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6, and
12. Default = 2.

8-228

stepcpnprice

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the portfolio.
Default = 100.

8-229

stepcpnprice

All arguments must be scalars or number of bonds (NUMBONDS)-by-1
vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRate to reflect
the same number of bonds. However, ConvDates has one less column
than CouponRate. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [Price, AccruedInterest] = stepcpnprice(Yield, Settle,
Maturity, ConvDates, CouponRates, Period, Basis,
EndMonthRule, Face) computes the price of bonds with stepped
coupons given the yield to maturity. The function supports any number
of conversion dates.

Price is a NUMBONDS-by-1 vector of clean prices.

AccruedInterest is a NUMBONDS-by-1 vector of accrued interest payable
at settlement dates.

Note For bonds with fixed coupons, use bndprice. If you use a
fixed-coupon bond with stepcpnprice, you will receive the error:
incorrect number of inputs.

Examples Compute the price and accrued interest due on a portfolio of
stepped-coupon bonds having a yield of 7.221%, given three conversion
scenarios:

8-230

stepcpnprice

• Bond A has two conversions, the first one falling on the settle date
and immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

• Bond C has three conversions, with one or more conversion dates not
on coupon dates. This case illustrates that only cash flows for full
periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97)

8.875% First
Conversion
(14-Jun-97)

8.875%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN

Yield = 0.07221;

Settle = datenum('02-Aug-1992');

8-231

stepcpnprice

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...

nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'),...

datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'),...

datenum('14-Jun-2005')];

Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.075 0.08875 0.0925 0.1];

Basis = 1;

Period = 2;

EndMonthRule = 1;

Face = 100;

[Price, AccruedInterest] = ...

stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, ...

Period, Basis, EndMonthRule, Face)

Price =

117.3824

113.4339

113.4339

AccruedInterest =

1.1587

0.9792

0.9792

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123,
on zero-coupon instruments pricing.

8-232

stepcpnprice

See Also bndprice | cdprice | stepcpncfamounts | stepcpnyield |
tbillprice | zeroprice

8-233

stepcpnyield

Purpose Yield to maturity of bond with stepped coupons

Syntax Yield = stepcpnyield(Price, Settle, Maturity, ConvDates,
CouponRate, Period, Basis, EndMonthRule, Face)

Arguments Price Vector containing price of the bonds.

Settle Settlement date. A vector of serial date numbers.
Settle must be earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6,
and 12. Default = 2.

8-234

stepcpnyield

Basis (Optional) Day-count basis of the instrument. A
vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the
portfolio. Default = 100.

8-235

stepcpnyield

All arguments must be number of bonds (NUMBONDS)-by-1 vectors, except
for ConvDates and CouponRate.

Note ConvDates has the same number of rows as CouponRate to reflect
the same number of bonds. However, ConvDates has one less column
than CouponRate. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description Yield = stepcpnyield(Price, Settle, Maturity, ConvDates,
CouponRate, Period, Basis, EndMonthRule, Face) computes the
yield to maturity of bonds with stepped coupons given the price. The
function supports any number of conversion dates.

Yield is a NUMBONDS-by-1 vector of yields to maturity in decimal form.

Note For bonds with fixed coupons, use bndyield. You will receive the
error incorrect number of inputs if you use a fixed-coupon bond
with stepcpnyield.

Examples Find the yield to maturity of three stepped-coupon bonds of known
price, given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date
and immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

8-236

stepcpnyield

• Bond C has three conversions, with one or more conversion dates not
on coupon dates. This case illustrates that only cash flows for full
periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97)

8.875% First
Conversion
(14-Jun-97)

8.875%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN

format long

Price = [117.3824; 113.4339; 113.4339];

Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];

8-237

stepcpnyield

Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.075 0.08875 0.0925 0.1];

Basis = 1;

Period = 2;

EndMonthRule = 1;

Face = 100;

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, ...

CouponRates, Period, Basis, EndMonthRule, Face)

Yield =

0.07221440204915

0.07221426780036

0.07221426780036

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123,
on zero-coupon instruments pricing.

See Also bndprice | cdprice | stepcpncfamounts | stepcpnprice |
tbillprice | zeroprice

8-238

tbilldisc2yield

Purpose Convert Treasury bill discount to equivalent yield

Syntax [BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

Arguments

Discount Discount rate of Treasury bills in decimal. The
discount rate basis is actual/360.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Description [BEYield MMYield] = tbilldisc2yield(Yield, Settle,
Maturity) converts the discount rate on Treasury bills into their
respective money-market or bond-equivalent yields.

BEYield is an NTBILLS-by-1 vector of bond-equivalent yields. The
bond-equivalent yield basis is actual/365.

MMYield is an NTBILLS-by-1 vector of money-market yields. The
money-market yield basis is actual/360.

Examples Given a Treasury bill with these characteristics, compute the
bond-equivalent and money-market yields.

Discount = 0.0497;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield =

8-239

tbilldisc2yield

0.0517

MMYield =

0.0510

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

See Also tbillyield2disc | zeroyield

8-240

tbillprice

Purpose Price Treasury bill

Syntax Price = tbillprice(Rate, Settle, Maturity, Type)

Arguments

Rate Bond-equivalent yield, money-market yield, or
discount rate in decimal.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

Type (Optional) Rate type. Determines how to interpret
values entered in Rate. 1 = money market (default).
2 = bond-equivalent. 3 = discount rate.

All arguments must be a scalar or some Treasury bills (NTBILLS) by
1 or 1-by-NTBILLS vector.

Note The bond-equivalent yield basis is actual/365. The money-market
yield basis is actual/360. The discount rate basis is actual/360.

Description Price = tbillprice(Rate, Settle, Maturity, Type) computes the
price of a Treasury bill given a yield or discount rate.

Price is an NTBILLS-by-1 vector of T-bill prices for every $100 face.

Examples Example 1. Given a Treasury bill with these characteristics, compute
the price of the Treasury bill using the bond-equivalent yield as input.

Rate = 0.045;
Settle = '01-Oct-02';

8-241

tbillprice

Maturity = '31-Mar-03';

Type = 2;

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

97.8172

Example 2. Use tbillprice to price a portfolio of Treasury bills.

Rate = [0.045; 0.046];
Settle = {'02-Jan-02'; '01-Mar-02'};
Maturity = {'30-June-02'; '30-June-02'};
Type = [2 3];

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

97.8408
98.4539

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

See Also tbillyield | zeroprice

8-242

tbillrepo

Purpose Break-even discount of repurchase agreement

Syntax TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,
SaleDate, Maturity)

Arguments

RepoRate The annualized, 360-day based repurchase rate,
in decimal.

InitialDiscount Discount on the Treasury bill on the day of
purchase, in decimal.

PurchaseDate Date the Treasury bill is purchased.

SaleDate Date the Treasury bill repurchase term is due.

Maturity Treasury bill maturity date.

All arguments must be a scalar or some Treasury bills (NTBILLS) by 1
or a 1-by-NTBILLS vector.

All dates must be in serial date number format.

Description TBEDiscount = tbillrepo(RepoRate, InitialDiscount,
PurchaseDate, SaleDate, Maturity) computes the true break-even
discount of a repurchase agreement. TBEDiscount can be a scalar or
vector of size NTBills-by-1.

Examples Compute the true break-even discount on a Treasury bill repurchase
agreement.

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = '3-Jan-2002';
SaleDate = '3-Feb-2002';
Maturity = '3-Apr-2002';

8-243

tbillrepo

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...
PurchaseDate, SaleDate, Maturity)

TBEdiscount =

0.0491
0.0478

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

8-244

tbillval01

Purpose Value of one basis point

Syntax [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Arguments

Settle Settlement date of Treasury bills. Settle must be
earlier than Maturity.

Maturity Maturity date of Treasury bills.

Description [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle,
Maturity) calculates the value of one basis point of $100 Treasury bill
face value on the discount rate, money-market yield, or bond-equivalent
yield.

Val01Disc is the value of one basis point of discount rate.

Val01MMY is the value of one basis point of money-market yield.

Val01BEY is the value of one basis point of bond-equivalent yield.

All outputs are of size equal to the number of Treasury bills (NTBILLS)
by 1.

Examples Given a Treasury bill with these settle and maturity dates, compute
the value of one basis point.

Settle = '01-Mar-03';

Maturity = '30-June-03';

[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc =

0.0034

8-245

tbillval01

Val01MMY =

0.0034

Val01BEY =

0.0033

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp 108 - 115,
on zero coupon instrument pricing.

See Also tbilldisc2yield | tbillprice | tbillyield | tbillyield2disc

8-246

tbillyield

Purpose Yield on Treasury bill

Syntax [MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)

Arguments

Price Price of Treasury bills for every $100 face value.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

All arguments must be a scalar or some Treasury bills (NTBILLS) by
1 or 1-by-NTBILLS vector.

Description [MMYield, BEYield, Discount] = tbillyield(Price, Settle,
Maturity) computes the yield of U.S. Treasury bills given Price,
Settle, and Maturity. MMYield is the money-market yields of the
Treasury bills. BEYield is the bond equivalent yields of the Treasury
bills. Discount is the discount rates of the Treasury bills.

All outputs are NTBILLS-by-1 vectors.

Note The money-market yield basis is actual/360. The bond-equivalent
yield basis is actual/365. The discount rate basis is actual/360.

Examples Given a Treasury bill with these characteristics, compute the
money-market and bond-equivalent yields and the discount rate.

Price = 98.75;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

8-247

tbillyield

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,...

Maturity)

MMYield =

0.0252

BEYield =

0.0255

Discount =

0.0249

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

See Also tbilldisc2yield | tbillprice | tbillyield2disc | zeroyield

8-248

tbillyield2disc

Purpose Convert Treasury bill yield to equivalent discount

Syntax Discount = tbillyield2disc(Yield, Settle, Maturity, Type)

Arguments Yield Yield of Treasury bills in decimal.

Settle Settlement date. Settle must be earlier than
Maturity.

Maturity Maturity date.

Type (Optional) Yield type. Determines how to interpret
values entered in Yield. 1 = money market (default).
2 = bond-equivalent.

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Note The money-market yield basis is actual/360. The bond-equivalent
yield basis is actual/365. The discount rate basis is actual/360.

Description Discount = tbillyield2disc(Yield, Settle, Maturity, Type)
converts the yield on some Treasury bills into their respective discount
rates.

Discount is a NTBILLS-by-1 vector of T-bill discount rates.

Examples Given a Treasury bill with these characteristics, compute the discount
rate on a money-market basis.

Yield = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

Discount = tbillyield2disc(Yield, Settle, Maturity)

8-249

tbillyield2disc

Discount =

0.0485

Now recompute the discount on a bond-equivalent basis.

Discount = tbillyield2disc(Yield, Settle, Maturity, 2)

Discount =

0.0478

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

See Also tbilldisc2yield

8-250

tfutbyprice

Purpose Future prices of Treasury bonds given spot price

Syntax QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments SpotCurve Treasury spot curve; a number of futures (NFUT) by 3
matrix in the form of
[SpotDates SpotRates Compounding].

Allowed compounding values are -1, 1, 2 (default),
3, 4, and 12.

Price Scalar or vector containing prices of Treasury
bonds or notes per $100 notional. Use bndprice for
theoretical value of bond.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond
maturity.

Interpolation (Optional) Interpolation method. Available methods
are (0) nearest, (1) linear, and (2) cubic. Default = 1.
See interp1 for more information.

Inputs (except SpotCurve) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

8-251

tfutbyprice

Description QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut,
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)
computes future prices of Treasury notes and bonds given the spot price.

In addition, you can use the Fixed-Income Toolbox method
getZeroRates for an IRDataCurve object with a Dates property to
create a vector of dates and data acceptable for tfutbyprice. For more
information, see “Converting an IRDataCurve or IRFunctionCurve
Object” on page 6-25.

Examples Determine the future price of two Treasury bonds based upon a spot
rate curve constructed from data for November 14, 2002.

% Constructing spot curve from Nov 14, data

Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;

datenum('10/31/2004'), 0.02125;

datenum('11/15/2007'), 0.03;

datenum('11/15/2012'), 0.04;

datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...

zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond's future quoted price

RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];

CouponRate = [0.06;0.0575];

ConvFactor = convfactor(RefDate, Maturity, CouponRate);

Price = [114.416; 113.171];

8-252

tfutbyprice

Interpolation = 1;

QtdFutPrice = tfutbyprice(SpotCurve, Price, Settle, ...

MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

114.0409

113.4029

See Also convfactor | tfutbyyield

8-253

tfutbyyield

Purpose Future prices of Treasury bonds given current yield

Syntax QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments SpotCurve Treasury spot curve. A number of futures
(NFUT)-by-3 matrix in the form of [SpotDates
SpotRates Compounding].

Allowed compounding values are -1, 1, 2 (default),
3, 4, and 12.

Yield Scalar or vector containing yield to maturity of
bonds. Use bndyield for theoretical value of bond
yield.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond
maturity.

Interpolation (Optional) Interpolation method. Available methods
are (0) nearest, (1) linear, and (2) cubic. Default = 1.
See interp1 for more information.

Inputs (except SpotCurve) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut,
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

8-254

tfutbyyield

computes future prices of Treasury notes and bonds given current yields
of Treasury bonds/notes.

In addition, you can use the Fixed-Income Toolbox method
getZeroRates for an IRDataCurve object with a Dates property to
create a vector of dates and data acceptable for tfutbyyield. For more
information, see “Converting an IRDataCurve or IRFunctionCurve
Object” on page 6-25.

Examples Determine the future price of two Treasury bonds based upon a spot
rate curve constructed from data for November 14, 2002.

% Constructing spot curve from Nov 14, data

Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;

datenum('10/31/2004'), 0.02125;

datenum('11/15/2007'), 0.03;

datenum('11/15/2012'), 0.04;

datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...

zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond's future quoted price

RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];

CouponRate = [0.06;0.0575];

ConvFactor = convfactor(RefDate, Maturity, CouponRate);

Yield = [0.03576; 0.03773];

Interpolation = 1;

8-255

tfutbyyield

QtdFutPrice = tfutbyyield(SpotCurve, Yield, Settle, ...

MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

114.0416

113.4034

See Also convfactor | tfutbyprice

8-256

tfutimprepo

Purpose Implied repo rates for Treasury bond future given price

Syntax ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments

ReinvestData Number of futures (NFUT) by 2 matrix of rates
and bases for the reinvestment of intervening
coupons in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Price Current bond price per $100 notional.

QtdFutPrice Quoted bond futures price per $100 notional.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except ReinvestData) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice,
Settle, MatFut, ConvFactor, CouponRate, Maturity) computes
the implied repo rate that prevents arbitrage of Treasury bond futures,
given the clean price at the settlement and delivery dates.

8-257

tfutimprepo

ImpliedRepo is the implied annual repo rate, in decimal, with an
actual/360 basis.

Examples Compute the implied repo rate given the following set of data.

ReinvestData = [0.018 3];

Price = [114.4160; 113.1710];

QtdFutPrice = [114.1201; 113.7090];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1; 0.9854];

CouponRate = [0.06; 0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...

Settle, MatFut, ConvFactor, CouponRate, Maturity)

ImpliedRepo =

0.0200

0.0200

See Also tfutpricebyrepo | tfutyieldbyrepo

8-258

tfutpricebyrepo

Purpose Implied repo rates given Treasury bond future price

Syntax [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData,
Price, Settle, MatFut, ConvFactor, CouponRate, Maturity)

Arguments RepoData Number of futures (NFUT) by 2 matrix of simple
term repo/funding rates in decimal and their bases
in the form of [RepoRate RepoBasis].
Specify RepoBasis as 2 = actual/360 or
3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix of rates and
bases for the reinvestment of intervening coupons
in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Price Quoted clean prices of Treasury bonds per $100
notional at Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or
a vector of size equal to the number of Treasury futures (NFUT) by 1 or
1-by-NFUT.

8-259

tfutpricebyrepo

Description [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData,
ReinvestData, Price, Settle, MatFut, ConvFactor,
CouponRate, Maturity) computes the theoretical futures bond price
given the settlement price, the repo/funding rates, and the reinvestment
rate.

QtdFutPrice is the quoted futures price, per $100 notional.

AccrInt is the accrued interest due at the delivery date, per $100
notional.

Examples Compute the quoted futures price and accrued interest due on the
target delivery date, given the following data.

RepoData = [0.020 2];

ReinvestData = [0.018 3];

Price = [114.416; 113.171];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1 ; 0.9854];

CouponRate = [0.06;0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ...

ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ...

Maturity)

QtdFutPrice =

114.1201

113.7090

AccrInt =

1.9891

0.4448

See Also tfutimprepo | tfutyieldbyrepo

8-260

tfutyieldbyrepo

Purpose Implied repo rates given Treasury bond future yield

Syntax FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments RepoData Number of futures (NFUT) by 2matrix of simple term
repo/funding rates in decimal and their bases in the
form of [RepoRate RepoBasis].
Specify RepoBasis as 2 = actual/360 or
3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix of rates and
bases for the reinvestment of intervening coupons
in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Yield Yield to maturity of Treasury bonds per $100
notional at Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or
a vector of size equal to the number of Treasury futures (NFUT) by 1 or
1-by-NFUT.

8-261

tfutyieldbyrepo

Description FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,
Settle, MatFut, ConvFactor, CouponRate, Maturity) computes
the theoretical futures bond yield given the settlement yield, the
repo/funding rate, and the reinvestment rate.

FwdYield is the forward yield to maturity, in decimal, compounded
semiannually.

Examples Compute the quoted futures bond yield, given the following data:

RepoData = [0.020 2];

ReinvestData = [0.018 3];

Yield = [0.0215; 0.0257];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1; 0.9854];

CouponRate = [0.06; 0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,...

Settle, MatFut, ConvFactor, CouponRate, Maturity)

FwdYield =

0.0221

0.0282

See Also tfutimprepo | tfutpricebyrepo

8-262

toRateSpec

Purpose Convert IRDataCurve object to RateSpec

Class @IRDataCurve

Syntax F = toratespec(CurveObj, InpDates)

Arguments CurveObj Interest-rate curve object that is constructed using
IRDataCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Description F = toratespec(CurveObj, InpDates) returns a RateSpec object
that is identical to the RateSpec structure created by the Financial
Derivatives Toolbox function intenvset.

Examples This example creates an IRDataCurve object from the IRDataCurve
constructor using Dates and Data and then is converted to a RateSpec
structure using the toRateSpec method:

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;

Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

irdc = IRDataCurve('Forward',today,Dates,Data)

irdc.toRateSpec(today+30:30:today+365)

irdc =

IRDataCurve handle

Properties:

Dates: [8x1 double]

Data: [8x1 double]

InterpMethod: 'linear'

Type: 'Forward'

8-263

toRateSpec

Settle: 733596

Compounding: 2

Basis: 0

Methods, Events, Superclasses

ans =

FinObj: 'RateSpec'

Compounding: 2

Disc: [12x1 double]

Rates: [12x1 double]

EndTimes: [12x1 double]

StartTimes: [12x1 double]

EndDates: [12x1 double]

StartDates: 733596

ValuationDate: 733596

Basis: 0

EndMonthRule: 1

How To • “@IRDataCurve” on page A-7

8-264

toRateSpec

Purpose Convert IRFunctionCurve object to RateSpec

Class @IRFunctionCurve

Syntax F = toRateSpec(CurveObj, InpDates)

Arguments CurveObj Interest-rate curve object that is constructed using
IRFunctionCurve.

InpDates Vector of input dates using MATLAB date format.
The input dates must be after the settle date.

Description F = toRateSpec(CurveObj, InpDates) returns a RateSpec object
that is identical to the RateSpec structure created by the Financial
Derivatives Toolbox function intenvset.

Examples This example creates an IRFunctionCurve object using the
IRFunctionCurve constructor and then a RateSpec structure is created
using the toRateSpec method:

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));

irfc.toRateSpec(today+30:30:today+365)

ans =

FinObj: 'RateSpec'

Compounding: 2

Disc: [12x1 double]

Rates: [12x1 double]

EndTimes: [12x1 double]

StartTimes: [12x1 double]

EndDates: [12x1 double]

StartDates: 733596

ValuationDate: 733596

8-265

toRateSpec

Basis: 0

EndMonthRule: 1

How To • “@IRFunctionCurve” on page A-12

8-266

zeroprice

Purpose Price zero-coupon instruments given yield

Syntax Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A vector of serial date numbers
or date strings. Settle must be earlier than
Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A vector
of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

8-267

zeroprice

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 =
ignore rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

Description Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the prices for a portfolio of general short and
long term zero-coupon instruments given the yield of the instruments.
Price is a column vector containing a price for each zero-coupon
instrument.

When there is less than one quasi-coupon, the function uses a simple
yield based upon "Period times Number of Days in quasi coupon period"
day-year. The default period is 2 and the default number of days is 180,
which makes the user-supplied yield a simple yield on a 360-day year.

For longer term computations (more than one quasi-coupon), use the
bond equivalent yield based upon present value (or compounding).

Formulas To compute the price when there is 1 or 0 quasi-coupon periods to
redemption, zeroprice uses the formula

Price
RV

DSR
E

Y
M

=
+ ×⎛

⎝⎜
⎞
⎠⎟

1

.

8-268

zeroprice

Quasi-coupon periods are the coupon periods that would exist if the
bond were paying interest at a rate other than zero.

When there is more than one quasi-coupon period to the redemption
date, zeroprice uses the formula

Price
RV

Y
M

N
DSC

E
q

=

+⎛
⎝⎜

⎞
⎠⎟

− +
1

1

.

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from settlement date to next quasi-coupon
date as if the security paid periodic interest.

DSR Number of days from settlement date to the redemption
date (call date, put date, and so on).

E Number of days in quasi-coupon period.

M Number of quasi-coupon periods per year (standard for
the particular security involved).

Nq Number of quasi-coupon periods between settlement date
and redemption date. If this number contains a fractional
part, raise it to the next whole number.

Price Dollar price per $100 par value.

RV Redemption value.

Y Annual yield (decimal) when held to redemption.

Examples Example 1. Compute the price of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;

8-269

zeroprice

Basis = 0;
Yield = 0.04;

Price = zeroprice(Yield, Settle, Maturity, Period, Basis)

Price =

98.6066

Example 2. Compute the prices of a portfolio of two zero-coupon
instruments, one short-term, and the other long-term.

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];

Price = zeroprice(Yield, Settle, Maturity, [], Basis)

Price =

98.6066
5.0697

References [1] Mayle, Jan. Standard Securities Calculation Methods. New York:
Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN
1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

See Also bndprice | cdprice | tbillprice | zeroyield

8-270

zeroyield

Purpose Yield of zero-coupon instruments given price

Syntax Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments Price Scalar or vector containing prices of instruments.

Settle Settlement date. A vector of serial date numbers or
date strings. Settle must be earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

8-271

zeroyield

• 12 = actual/actual (ISDA)

• 13 = BUS/252

For more information, see basis.

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment date is
always the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s coupon
payment date is always the last actual day of the
month.

Description Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the bond-equivalent yield for a portfolio of
general short and long term zero-coupon instruments given the price
of the instruments. Yield is a column vector containing a yield for
each zero-coupon instrument.

When the maturity date is fewer than 182 days away and the basis is
actual/365, the function uses a simple-interest algorithm. If maturity is
more than 182 days away, the function uses present value calculations.

When the basis is actual/360, the simple interest algorithm gives the
money-market yield for short (1 to 6 months to maturity) Treasury bills.

The present value algorithm always gives the bond equivalent yield of
the zero-coupon instrument. The algorithm is equivalent to calling
bndyield with the zero-coupon information within one basis point.

Formulas To compute the yield when there is zero or one quasi-coupon periods to
redemption, zeroyield uses the formula

Yield
RV P

P
M E
DSR

= −⎛
⎝⎜

⎞
⎠⎟

× ×⎛
⎝⎜

⎞
⎠⎟

.

8-272

zeroyield

Quasi-coupon periods are the coupon periods which would exist if the
bond was paying interest at a rate other than zero. The first term
calculates the yield on invested dollars. The second term converts this
yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption
date, zeroyield uses the formula

Yield
RV
P

M

Nq
DSC

E

= ⎛
⎝⎜

⎞
⎠⎟

−

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

×

− +

1

1

1

.

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from the settlement date to next
quasi-coupon date as if the security paid periodic interest.

DSR Number of days from the settlement date to redemption
date (call date, put date, and so on).

E Number of days in quasi-coupon period.

M Number of quasi-coupon periods per year (standard for the
particular security involved).

Nq Number of quasi-coupon periods between the settlement
date and redemption date. If this number contains a
fractional part, raise it to the next whole number.

P Dollar price per $100 par value.

RV Redemption value.

Yield Annual yield (decimal) when held to redemption.

8-273

zeroyield

Examples Example 1. Compute the yield of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 0;
Price = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

0.1490

Example 2. Recompute the yield of the same instrument using a
different day-count basis.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 1;
Price = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

0.1492

Example 3. Compute the yield of a long-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '15-Jan-2024';
Basis = 0;
Price = 9;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

8-274

zeroyield

0.0804

References [1] Mayle, Jan. Standard Securities Calculation Methods. New York:
Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN
1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

See Also bndyield | cdyield | tbillyield | zeroprice

8-275

zeroyield

8-276

A

Class Reference

• “@IRBootstrapOptions” on page A-2

• “@IRCurve” on page A-4

• “@IRDataCurve” on page A-7

• “@IRFitOptions” on page A-10

• “@IRFunctionCurve” on page A-12

A Class Reference

@IRBootstrapOptions
Create specific options for bootstrapping an interest-rate curve object

In this section...

“Hierarchy” on page A-2

“Constructor” on page A-2

“Public Read-Only Properties” on page A-2

“Methods” on page A-3

Hierarchy
Superclasses: None

Subclasses: None

Constructor
IRBootstrapOptions

Public Read-Only Properties

Name Description

ConvexityAdjustment Controls the convexity adjustment to interest
rate futures. This can be specified as a
function handle that takes time to maturity
as an input and returns a value which
is ConvexityAdjustment. Alternatively,
you can define ConvexityAdjustment
as an N-by-1 vector of values, where N is
the number of interest rate futures. In
either case, the ConvexityAdjustment is
subtracted from the futures rate.

For more information on defining a function
handle, see the MATLAB Programming
Fundamentals documentation.

A-2

@IRBootstrapOptions

Methods
There are no methods.

A-3

A Class Reference

@IRCurve
Base abstract class for interest-rate curve objects

In this section...

“Hierarchy” on page A-4

“Description” on page A-4

“Constructor” on page A-4

“Public Read-Only Properties” on page A-4

“Methods” on page A-6

Hierarchy
Superclasses: None

Subclasses: @IRDataCurve, @IRFunctionCurve

Description
IRCurve is an abstract class; you cannot create instances of it directly. You
can create IRDataCurve and IRFunctionCurve objects that are derived from
this class.

Constructor
@IRCurve is an abstract class. To construct an IRCurve object, use one of the
subclass constructors, IRDataCurve or IRFunctionCurve.

Public Read-Only Properties

Name Description

Type Type of interest-rate curve: zero, forward, or discount.

Settle Scalar or column vector of settlement dates.

A-4

@IRCurve

Name Description

Compounding Scalar that sets the compounding frequency per year for
the IRCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis Day-count basis of the interest-rate curve. A vector of
integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

A-5

A Class Reference

Methods
Classes that inherit from the IRCurve abstract class must implement the
following methods.

Method Description

getForwardRates Returns forward rates for input dates.

getZeroRates Returns zero rates for input dates.

getDiscountFactors Returns discount factors for input dates.

getParYields Returns par yields for input dates.

toRateSpec Converts to be a RateSpec object. This is
identical to the RateSpec structure produced
by the Financial Derivatives Toolbox function
intenvset.

A-6

@IRDataCurve

@IRDataCurve
Represent interest-rate curve object based on vector of dates and data

In this section...

“Hierarchy” on page A-7

“Description” on page A-7

“Constructor” on page A-7

“Public Read-Only Properties” on page A-8

“Methods” on page A-9

Hierarchy
Superclasses: @IRCurve

Subclasses: None

Description
IRDataCurve is a representation of an interest-rate curve object with dates
and data. You can construct this object directly by specifying dates and
corresponding interest rates or discount factors; alternatively, you can
bootstrap the object from market data. After an interest-rate curve object is
constructed, you can:

• Calculate forward and zero rates and determine par yields.

• Extract the discount factors.

• Convert to a RateSpec structure that is identical to the RateSpec structure
produced by the Financial Derivatives Toolbox function intenvset.

Constructor
IRDataCurve

A-7

A Class Reference

Public Read-Only Properties

Name Description

Type Type of interest-rate curve: zero, forward, or discount.

Settle Scalar or column vector of settlement dates.

Compounding Scalar that sets the compounding frequency per year for
the IRCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis Day-count basis of the financial curve. A vector of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

• 11 = 30/360E (ICMA)

A-8

@IRDataCurve

Name Description

• 12 = actual/actual (ISDA)

• 13 = BUS/252

Dates Dates corresponding to rate data.

Data Interest-rate data or discount factors for the curve object.

InterpMethod Values are:

• 'linear'— Linear interpolation (default).

• 'constant'— Piecewise constant interpolation.

• 'pchip'— Piecewise cubic Hermite interpolation.

• 'spline'— Cubic spline interpolation.

Methods
The following table contains links to methods with supporting reference
pages, including examples.

Method Description

getForwardRates Returns forward rates for input dates.

getZeroRates Returns zero rates for input dates.

getDiscountFactors Returns discount factors for input dates.

getParYields Returns par yields for input dates.

toRateSpec Converts to be a RateSpec object. This
structure is identical to the RateSpec
produced by the Financial Derivatives
Toolbox function intenvset.

bootstrap Bootstraps an interest rate curve from market
data.

A-9

A Class Reference

@IRFitOptions
Object to specify fitting options for an IRFunctionCurve interest-rate curve
object

In this section...

“Hierarchy” on page A-10

“Description” on page A-10

“Constructor” on page A-10

“Public Read-Only Properties” on page A-11

“Methods” on page A-11

Hierarchy
Superclasses: None

Subclasses: None

Description
The IRFitOptions object allows you to specify options relating to the fitting
process for an IRFunctionCurve object. Input arguments are specified in
parameter/value pairs. The IRFitOptions structure provides the capability
to choose which quantity to be minimized and other optimization parameters.

Constructor
IRFitOptions

A-10

@IRFitOptions

Public Read-Only Properties

Name Description

FitType Price, Yield, or DurationWeightedPrice
determines which is minimized in the curve fitting
process. DurationWeightedPrice is the default.

InitialGuess Initial guess for the parameters of the curve
function.

UpperBound Upper bound for the parameters of the curve
function.

LowerBound Lower bound for the parameters of the curve
function.

OptOptions Optimization structure based on the output from
the Optimization Toolbox function optimset. This
optimization structure is evaluated by lsqnonlin.

Methods
There are no methods.

A-11

A Class Reference

@IRFunctionCurve
Represent an interest-rate curve object using a function

In this section...

“Hierarchy” on page A-12

“Description” on page A-12

“Constructor” on page A-12

“Public Read-Only Properties” on page A-13

“Methods” on page A-14

Hierarchy
Superclasses: @IRCurve

Subclasses: None

Description
IRFunctionCurve is a representation of an interest-rate curve object. You can
construct this object directly by specifying a function handle or a function
can be fit to market data using methods of the object. After an interest-rate
curve object is constructed; you can:

• Calculate forward and zero rates and determine par yields.

• Extract the discount factors.

• Convert to a RateSpec structure; this is identical to the RateSpec structure
produced by the Financial Derivatives Toolbox function intenvset.

Constructor
IRFunctionCurve

A-12

@IRFunctionCurve

Public Read-Only Properties

Name Description

Type Type of interest-rate curve: zero, forward, or
discount.

Settle Scalar or column vector of settlement dates.

Compounding Scalar that sets the compounding frequency per year
for the IRCurve object:

• -1 = Continuous compounding

• 1 = Annual compounding

• 2 = Semiannual compounding (default)

• 3 = Compounding three times per year

• 4 = Quarterly compounding

• 6 = Bimonthly compounding

• 12 = Monthly compounding

Basis Day-count basis of the interest-rate curve. A vector
of integers.

• 0 = actual/actual (default)

• 1 = 30/360 (SIA)

• 2 = actual/360

• 3 = actual/365

• 4 = 30/360 (BMA)

• 5 = 30/360 (ISDA)

• 6 = 30/360 (European)

• 7 = actual/365 (Japanese)

• 8 = actual/actual (ICMA)

• 9 = actual/360 (ICMA)

• 10 = actual/365 (ICMA)

A-13

A Class Reference

Name Description

• 11 = 30/360E (ICMA)

• 12 = actual/actual (ISDA)

• 13 = BUS/252

FunctionHandle Function handle that defines the interest-rate curve.
For more information on defining a function handle,
see the MATLAB Programming Fundamentals
documentation.

Methods
The following table contains links to methods with supporting reference
pages, including examples.

Method Description

getForwardRates Returns forward rates for input dates.

getZeroRates Returns zero rates for input dates.

getDiscountFactors Returns discount factors for input dates.

getParYields Returns par yields for input dates.

toRateSpec Converts to be a RateSpec object. This
is identical to the RateSpec structure
produced by the Financial Derivatives
Toolbox function intenvset.

fitSvensson Fits a Svensson function to market data.

fitNelsonSiegel Fits a Nelson-Siegel function to market
data.

fitSmoothingSpline Fits a smoothing spline function to
market data.

fitFunction Fits a custom function to market data.

A-14

B

Bibliography

• “Fitting Interest-Rate Curve Functions” on page B-2

• “Bootstrapping a Swap Curve” on page B-3

• “Bond Futures” on page B-4

• “Credit Derivatives” on page B-5

B Bibliography

Fitting Interest-Rate Curve Functions
Nelson, C.R., Siegel, A.F., "Parsimonious modelling of yield curves," Journal
of Business, Number 60, 1987, pp 473-89.

Svensson, L.E.O., "Estimating and interpreting forward interest rates:
Sweden 1992-4," International Monetary Fund, IMF Working Paper, 1994,
p. 114.

Fisher, M., Nychka, D., Zervos, D., "Fitting the term structure of interest
rates with smoothing splines," Board of Governors of the Federal Reserve
System, Federal Reserve Board Working Paper, 1995.

Anderson, N., Sleath, J., "New estimates of the UK real and nominal yield
curves," Bank of England Quarterly Bulletin, November, 1999, pp 384-92.

Waggoner, D., "Spline Methods for Extracting Interest Rate Curves from
Coupon Bond Prices," Federal Reserve Board Working Paper, 1997, p. 10.

"Zero-coupon yield curves: technical documentation," BIS Papers, Bank for
International Settlements, Number 25, October, 2005.

Bolder, D.J., Gusba,S, "Exponentials, Polynomials, and Fourier Series: More
Yield Curve Modelling at the Bank of Canada," Working Papers, Bank of
Canada, 2002, p. 29.

Bolder, D.J., Streliski, D., "Yield Curve Modelling at the Bank of Canada,"
Technical Reports, Number 84, 1999, Bank of Canada.

B-2

Bootstrapping a Swap Curve

Bootstrapping a Swap Curve
Hagan, P., West, G., "Interpolation Methods for Curve Construction," Applied
Mathematical Finance, Vol. 13, Number 2, 2006.

Ron, Uri, "A Practical Guide to Swap Curve Construction," Working Papers,
Bank of Canada, 2000, p. 17.

B-3

B Bibliography

Bond Futures
Burghardt, G., T. Belton, M. Lane, and J. Papa, The Treasury Bond Basis,
McGraw-Hill, 2005.

Krgin, Dragomir, Handbook of Global Fixed Income Calculations, John Wiley
& Sons, 2002.

B-4

Credit Derivatives

Credit Derivatives
Beumee, J., D. Brigo, D. Schiemert, and G. Stoyle. “Charting a Course
Through the CDS Big Bang,” Fitch Solutions, Quantitative Research, Global
Special Report. April 7, 2009.

Hull, J., and A. White, “Valuing Credit Default Swaps I: No Counterparty
Default Risk,” Journal of Derivatives8, 29-40.

O’Kane, D. and S. Turnbull, “Valuation of Credit Default Swaps.” Lehman
Brothers, Fixed Income Quantitative Credit Research, April, 2003.

B-5

B Bibliography

B-6

C

Examples

Use this list to find examples in the documentation.

C Examples

Agency Option Adjusted Spreads
“Computing the Agency OAS for Bonds” on page 3-3

Treasury Bills
“Treasury Bill Repurchase Agreements” on page 3-8
“Treasury Bill Yields” on page 3-10

Using Zero-Coupon Bonds
“Pricing Treasury Notes” on page 3-13
“Pricing Corporate Bonds” on page 3-15

Stepped-Coupon Bonds
“Cash Flows from Stepped-Coupon Bonds” on page 3-17
“Price and Yield of Stepped-Coupon Bonds” on page 3-19

Pricing and Hedging
“Swap Pricing Example” on page 4-3

Bond Futures
“Example Analysis of Bond Futures” on page 4-14

C-2

Credit Default Swaps

Credit Default Swaps
“Bootstrapping a Default Probability Curve” on page 5-2
“Finding the Breakeven Spread for a New CDS Contract” on page 5-5
“Valuing an Existing CDS Contract” on page 5-8
“Converting from Running to Upfront and Vice Versa” on page 5-10
“Bootstrapping from Inverted Market Curves” on page 5-13

C-3

C Examples

C-4

Glossary

Glossary

American option
An option that can be exercised any time until its expiration date.
Contrast with European option.

amortization
Reduction in value of an asset over some period for accounting purposes.
Generally used with intangible assets. Depreciation is the term used
with fixed or tangible assets.

annuity
A series of payments over a period of time. The payments are usually
in equal amounts and usually at regular intervals such as quarterly,
semiannually, or annually.

arbitrage
The purchase of securities on one market for immediate resale on
another market to profit from a price or currency discrepancy.

basis point
One hundredth of one percentage point, or 0.0001.

beta
The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is most commonly used
with respect to equities. A high-beta instrument is riskier than a
low-beta instrument.

binomial model
A method of pricing options or other equity derivatives in which
the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two
values (one higher and one lower) over any short time period.

Black-Scholes model
The first complete mathematical model for pricing options, developed
by Fischer Black and Myron Scholes. It examines market price, strike
price, volatility, time to expiration, and interest rates. It is limited to
only certain kinds of options.

Glossary-1

Glossary

Bollinger band chart
A financial chart that plots actual asset data along with three other
bands of data: the upper band is two standard deviations above
a user-specified moving average; the lower band is two standard
deviations below that moving average; and the middle band is the
moving average itself.

bootstrapping, bootstrap method
A procedure for constructing a term structure from a set of market
instruments by progressively deriving rates.

building a binomial tree
For a binomial option model: plotting the two possible short-term
price-changes values, and then the subsequent two values each, and
then the subsequent two values each, and so on, over time, is known
as “building a binomial tree.” See also binomial model on page
Glossary-1.

call
a. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See put on page Glossary-10.
b. A demand to submit bonds to the issuer for redemption before the
maturity date. c. A demand for payment of a debt. d. A demand for
payment due on stock bought on margin.

callable bond
A bond that allows the issuer to buy back the bond at a predetermined
price at specified future dates. The bond contains an embedded call
option; that is, the holder has sold a call option to the issuer. See also
puttable bond on page Glossary-10.

cap
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain level.

caplet
A cap that is guaranteed for one particular date.

cash flow
Cash received and paid over time.

Glossary-2

Glossary

cheapest to deliver
Cheapest to deliver represents the least expensive underlying product
that can be delivered upon expiry to satisfy the requirements of a
derivative contract.

clean price
The price of a bond excluding any interest that has accrued since issue
or the most recent coupon payment.

collar
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain upper level nor fall below a lower level. It
is designed to protect an investor against wide fluctuations in interest
rates.

conditional prepayment rate (CPR)
The fraction of mortgage principal that had not prepaid at the beginning
of any year but does prepay during the year. CPR is an annualization of
the single monthly mortality rate. See also single monthly mortality
(SMM) on page Glossary-11.

conversion factor
The rate used to adjust differences in bond values for delivery on U.S.
Treasury bond futures contracts.

convexity
A measure of the rate of change in duration; measured in time. The
greater the rate of change, the more the duration changes as yield
changes.

correlation
The simultaneous change in value of two random numeric variables.

correlation coefficient
A statistic in which the covariance is scaled to a value between
minus one (perfect negative correlation) and plus one (perfect positive
correlation).

Glossary-3

Glossary

coupon
Detachable certificate attached to a bond that shows the amount of
interest payable at regular intervals, usually semiannually. Originally
coupons were actually attached to the bonds and had to be cut off or
"clipped" to redeem them and receive the interest payment.

coupon dates
The dates when the coupons are paid. Typically a bond pays coupons
annually or semiannually.

coupon rate
The nominal interest rate that the issuer promises to pay the buyer of
a bond.

covariance
A measure of the degree to which returns on two assets move in tandem.
A positive covariance means that asset returns move together; a
negative covariance means they vary inversely.

credit default swap (CDS)
The buyer of a credit default swap receives credit protection, whereas
the seller of the credit default swap guarantees the credit worthiness of
the product. By doing this, the risk of default is transferred from the
holder of the fixed-income security to the seller of the credit default
swap.

delta
The rate of change of the price of a derivative security relative to the
price of the underlying asset; that is, the first derivative of the curve that
relates the price of the derivative to the price of the underlying security.

depreciation
Reduction in value of fixed or tangible assets over some period for
accounting purposes. See also amortization on page Glossary-1.

derivative
A financial instrument that is based on some underlying asset. For
example, an option is a derivative instrument based on the right to buy
or sell an underlying instrument.

Glossary-4

Glossary

dirty price
The price of a bond including the accrued interest.

discount curve
The curve of discount rates vs. maturity dates.

duration
The expected life of a fixed-income security considering its coupon yield,
interest payments, maturity, and call features. As market interest
rates rise, the duration of a financial instrument decreases. See also
Macaulay duration on page Glossary-7.

efficient frontier
A graph representing a set of portfolios that maximizes expected return
at each level of portfolio risk. See also Markowitz model on page
Glossary-8.

elasticity
See lambda on page Glossary-7.

Eurodollar
U.S. dollar-denominated deposits at foreign banks or foreign branches
of American banks.

European option
An option that can be exercised only on its expiration date. Contrast
with American option.

exercise price
The price set for buying an asset (call) or selling an asset (put). The
strike price.

face value
The maturity value of a security. Also known as par value, principal
value, or redemption value.

fixed-income security
A security that pays a specified cash flow over a specific period. Bonds
are typical fixed-income securities.

Glossary-5

Glossary

floor
Interest-rate option that guarantees that the rate on a floating-rate loan
will not fall below a certain level.

forward curve
The curve of forward interest rates vs. maturity dates.

forward rate
The future interest rate of a bond inferred from the term structure,
especially from the yield curve of zero-coupon bonds, calculated from the
growth factor of an investment in a zero held until maturity.

forward rate agreement (FRA)
A forward contract that determines an interest rate to be paid or
received on an obligation beginning at a start date sometime in the
future.

future value
The value that a sum of money (the present value) earning compound
interest will have in the future.

gamma
The rate of change of delta for a derivative security relative to the price
of the underlying asset; that is, the second derivative of the option price
relative to the security price.

Greeks
Collectively, "greeks" refer to the financial measures delta, gamma,
lambda, rho, theta, and vega, which are sensitivity measures used in
evaluating derivatives.

hedge
A securities transaction that reduces or offsets the risk on an existing
investment position.

implied repo rate
Implied repo rate is the rate of return of borrowing money to buy an
asset in the spot market and delivering it in the futures market where
the notional is used to repay the loan.

Glossary-6

Glossary

implied volatility
For an option, the variance that makes a call option price equal to the
market price. Given the option price, strike price, and other factors, the
Black-Scholes model computes implied volatility.

internal rate of return
a. The average annual yield earned by an investment during the
period held. b. The effective rate of interest on a loan. c. The discount
rate in discounted cash flow analysis. d. The rate that adjusts the
value of future cash receipts earned by an investment so that interest
earned equals the original cost. See also yield to maturity on page
Glossary-14.

issue date
The date a security is first offered for sale. That date usually determines
when interest payments, known as coupons, are made.

lambda
The percentage change in the price of an option relative to a 1% change
in the price of the underlying security. Also known as elasticity.

LIBOR
Abbreviation for London Interbank Offered Rate, an interest rate set
daily in London. Applies to loans among large international banks.

long position
Outright ownership of a security or financial instrument. The owner
expects the price to rise to make a profit on some future sale.

long rate
The yield on a zero-coupon Treasury bond.

Macaulay duration
A widely used measure of price sensitivity to yield changes developed by
Frederick Macaulay in 1938. It is measured in years and is a weighted
average-time-to-maturity of an instrument. The Macaulay duration
of an income stream, such as a coupon bond, measures how long, on
average, the owner waits before receiving a payment. It is the weighted
average of the times payments are made, with the weights at time T
equal to the present value of the money received at time T.

Glossary-7

Glossary

Markowitz model
A model for selecting an optimum investment portfolio, devised by H.
M. Markowitz. It uses a discrete-time, continuous-outcome approach
for modeling investment problems, often called the mean-variance
paradigm. See also efficient frontier on page Glossary-5.

maturity date
The date when the issuer returns the final face value of a bond to the
buyer.

mean
a. A number that typifies a set of numbers, such as a geometric mean or
an arithmetic mean. b. The average value of a set of numbers.

modified duration
The Macaulay duration discounted by the per-period interest rate; that
is, divided by (1+rate/frequency).

Monte-Carlo simulation
A mathematical modeling process. For a model that has several
parameters with statistical properties, pick a set of random values for
the parameters and run a simulation. Then pick another set of values,
and run it again. Run it many times (often 10,000 times) and build up a
statistical distribution of outcomes of the simulation. This distribution
of outcomes is then used to answer whatever question you are asking.

moving average
A price average that is adjusted by adding other parametrically
determined prices over some time period.

moving-averages chart
A financial chart that plots leading and lagging moving averages for
prices or values of an asset.

Nelson-Siegel model
A model that fits the empirical form of the yield curve with a prespecified
functional form of the spot rates, which is a function of the time to
maturity of the bonds.

Glossary-8

Glossary

normal (bell-shaped) distribution
In statistics, a theoretical frequency distribution for a set of variable
data, usually represented by a bell-shaped curve symmetrical about
the mean.

notional
The nominal value used to calculate swap payments.

odd first or last period
Fixed-income securities may be purchased on dates that do not coincide
with coupon or payment dates. The length of the first and last periods
may differ from the regular period between coupons, and thus the bond
owner is not entitled to the full value of the coupon for that period.
Instead, the coupon is prorated according to how long the bond is held
during that period.

off-the-run
All Treasury bonds and notes issued before the most recently issued
bond or note of a particular maturity. These are the opposite of
on-the-run treasuries.

on-the-run
The most recently issued U.S. Treasury bond or note of a particular
maturity. These are the opposite of off-the-run treasuries.

option
A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

option-adjusted spread
A yield spread that is not directly attributable to the characteristics
of a fixed income security.

pass-through
A type of mortgage-backed security in which the interest and principal
payments on the underlying mortgages "pass through" to the holders,
pro rata, minus a servicing fee.

Glossary-9

Glossary

par value
The maturity or face value of a security or other financial instrument.

par yield curve
The yield curve of bonds selling at par, or face, value.

piecewise constant interpolation
Interpolation where intermediate points take the value of the previous
data point.

present value
Today’s value of an investment that yields some future value when
invested to earn compounded interest at a known interest rate; that is,
the future value at a known period in time discounted by the interest
rate over that time period.

principal value
See par value on page Glossary-10.

purchase price
Price paid for a security. Typically the purchase price of a bond is not
the same as the redemption value.

put
An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See also call on page
Glossary-2.

puttable bond
A bond that allows the holder to redeem the bond at a predetermined
price at specified future dates. The bond contains an embedded put
option; that is, the holder has bought a put option. See also callable
bond on page Glossary-2.

redemption value
See par value on page Glossary-10.

regression analysis
Statistical analysis techniques that quantify the relationship between
two or more variables. The intent is quantitative prediction or

Glossary-10

Glossary

forecasting, particularly using a small population to forecast the
behavior of a large population.

rho
The rate of change in a derivative’s price relative to the underlying
security’s risk-free interest rate.

repo rate
The discounted interest rate at which a central bank repurchases
government securities.

running
The breakeven, or running spread is the premium a protection buyer
needs to pay, with no upfront payments involved, to receive protection
for credit events associated to a given reference entity.

sensitivity
The "what if" relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific
synonym is volatility.

settlement date
The date when money first changes hands; that is, when a buyer
actually pays for a security. It need not coincide with the issue date.

short rate
The annualized one-period interest rate.

short sale, short position
The sale of a security or financial instrument not owned, in anticipation
of a price decline and making a profit by purchasing the instrument
later at a lower price, and then delivering the instrument to complete
the sale. See long position on page Glossary-7.

single monthly mortality (SMM)
The fraction of mortgage principal that had not prepaid at the
beginning of a given month but does prepay during the month. See also
conditional prepayment rate (CPR) on page Glossary-3.

Glossary-11

Glossary

smoothing spline
Cubic spline that is smoothed by applying a penalty to the spline’s
second derivative.

spot curve, spot yield curve
See zero curve, zero-coupon yield curve on page Glossary-15.

spot rate
The current interest rate appropriate for discounting a cash flow of
some given maturity.

spread
For options, a combination of call or put options on the same stock with
differing exercise prices or maturity dates.

standard deviation
A measure of the variation in a distribution, equal to the square root of
the arithmetic mean of the squares of the deviations from the arithmetic
mean; the square root of the variance.

stochastic
Involving or containing a random variable or variables; involving chance
or probability.

straddle
A strategy used in trading options or futures. It involves simultaneously
purchasing put and call options with the same exercise price and
expiration date, and it is most profitable when the price of the
underlying security is volatile.

strike
Exercise a put or call option.

strike price
See exercise price on page Glossary-5.

Svensson model
Extends the Nelson-Siegel model by adding a further term that allows
for a second “hump.” The extra precision is achieved by adding two

Glossary-12

Glossary

more parameters, β3 and τ2, which have to be estimated. See also
Nelson-Siegel model on page Glossary-8.

swap
A contract between two parties to exchange cash flows in the future
according to some formula.

swap option
A swap option; an option on an interest-rate swap. The option gives
the holder the right to enter into a contracted interest-rate swap at a
specified future date. See also swap on page Glossary-13.

tenor
Life of a swap.

term repo rate
Term repo rate is the rate of interest for a repurchase agreement that is
structured to be in effect for a specific period of time. See also implied
repo rate on page Glossary-6.

term structure
The relationship between the yields on fixed-interest securities and
their maturity dates. Expectation of changes in interest rates affects
term structure, as do liquidity preferences and hedging pressure. A
yield curve is one representation in the term structure.

theta
The rate of change in the price of a derivative security relative to time.
Theta is usually small or negative since the value of an option tends to
drop as it approaches maturity.

Treasury bill
Short-term U.S. Government security issued at a discount from the face
value and paying the face value at maturity.

Treasury bond
Long-term debt obligation of the U.S. Government that makes coupon
payments semiannually and is sold at or near par value in $1000
denominations or higher. Face value is paid at maturity.

Glossary-13

Glossary

upfront
The upfront of the contract is the current value expressed as a fraction
of the notional amount of the contract, and it is commonly use to quote
market values.

variance
The dispersion of a variable. The square of the standard deviation.

vega
The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility.

volatility
a. Another general term for sensitivity. b. The standard deviation of
the annualized continuously compounded rate of return of an asset. c.
A measure of uncertainty or risk.

yield
a. Measure of return on an investment, stated as a percentage of
price. Yield can be computed by dividing return by purchase price,
current market value, or other measure of value. b. Income from a bond
expressed as an annualized percentage rate. c. The nominal annual
interest rate that gives a future value of the purchase price equal to
the redemption value of the security. Any coupon payments determine
part of that yield.

yield curve
Graph of yields (vertical axis) of a particular type of security versus the
time to maturity (horizontal axis). This curve usually slopes upward,
indicating that investors usually expect to receive a premium for
securities that have a longer time to maturity. The benchmark yield
curve is for U.S. Treasury securities with maturities ranging from three
months to 30 years. See term structure on page Glossary-13.

yield to maturity
A measure of the average rate of return that will be earned on a bond
if held to maturity.

Glossary-14

Glossary

zero curve, zero-coupon yield curve
A yield curve for zero-coupon bonds; zero rates versus maturity dates.
Since the maturity and duration (Macaulay duration) are identical for
zeros, the zero curve is a pure depiction of supply/demand conditions for
loanable funds across a continuum of durations and maturities. Also
known as spot curve or spot yield curve.

zero-coupon bond, or zero
A bond that, instead of carrying a coupon, is sold at a discount from its
face value, pays no interest during its life, and pays the principal only
at maturity.

Glossary-15

Glossary

Glossary-16

Index

IndexA
actual/360 3-7
Agency Option-Adjusted Spreads (AOAS)

defined 3-2
agencyoas 8-2
agencyprice 8-8

B
bkcall 8-14
bkcaplet 8-20
bkfloorlet 8-23
bkput 8-26
bndfutimprepo 8-33
bndfutprice 8-39
bond equivalent yield 8-210
bond futures 4-12

example analysis 4-14
bootstrap (IRDataCurve) 8-45
break-even discount rate 3-8

C
cbprice 8-54
cdai 8-63
cdprice 8-65
cdsbootstrap 8-68
cdsoptprice 8-75
cdsprice 8-81
cdsspread 8-89
cdyield 8-96
cheapest to deliver (CTD) 4-15
conditional prepayment rate (CPR) 2-4
conversion factors 4-14
convertible bond 4-10
convfactor 8-99
coupon bond functions 3-12
CPR

(conditional payment rate) 2-4
Credit Default Swap (CDS)

defined 5-2
CTD

(cheapest to deliver) 4-15

D
discount security 3-7
duration

modified 2-8

E
effective duration 2-10

defined mathematically 2-10

F
fitFunction (IRFunctionCurve) 8-103
fitNelsonSiegel (IRFunctionCurve) 8-110
fitSmoothingSpline

(IRFunctionCurve) 8-116
fitSvensson (IRFunctionCurve) 8-123
forward rate agreement 8-164

defined 8-169

G
getDiscountFactors

(IRFunctionCurve) 8-131
getDiscountFactors(IRDataCurve) 8-129
getForwardRates (IRDataCurve) 8-133
getForwardRates (IRFunctionCurve) 8-136
getParYields (IRDataCurve) 8-139
getParYields (IRFunctionCurve) 8-142
getZeroRates (IRDataCurve) 8-145
getZeroRates (IRFunctionCurve) 8-148

I
implied repo 4-15
interest-rate curve objects

Index-1

Index

class objects 6-2
creating 6-4
workflow 6-3

IRBootstrapOptions 8-151
IRDataCurve 8-152

bootstrapping 6-7
constructor 6-6
converting to RateSpec 6-25

IRFitOptions 8-156
IRFunctionCurve 8-158

converting to RateSpec 6-25
customizing using fitFunction 6-21
using function handle 6-13
using Nelson-Siegel model 6-14
using smoothing spline model 6-18
using Svensson model 6-16

L
liborduration 8-162
liborfloat2fixed 8-164
liborprice 8-169

M
mbscfamounts 8-173
mbsconvp 8-176
mbsconvy 8-178
mbsdurp 8-180
mbsdury 8-183
mbsnoprepay 8-185
mbsoas2price 8-187
mbsoas2yield 8-191
mbspassthrough 8-195
mbsprice 8-197
mbsprice2oas 8-200
mbsprice2speed 8-204
mbswal 8-207
mbsyield 8-209
mbsyield2oas 8-212

mbsyield2speed 8-216
modified duration 2-8
mortgage yield 8-210
mortgage-backed securities 2-2

O
OAS

(option-adjusted spread) 2-9
off-the-run 3-20
on-the-run 3-20
option-adjusted spread

defined 2-10
option-adjusted spread (OAS) 2-9

effect on pool pricing 2-10

P
pass-through certificate 2-2
prepayment 2-3
prepayment summary 2-16
psaspeed2default 8-219
psaspeed2rate 8-220
Public Securities Association (PSA) 2-3
PVBP 4-16

Q
quasi-coupon periods

zeroprice 8-269
zeroyield 8-273

S
seasoned prepayment vector 2-13
single monthly mortality (SMM) rate 2-4
SMM

single monthly mortality rate 2-4
spread 3-20

term structure of 3-20
stepcpncfamounts 8-222

Index-2

Index

stepcpnprice 8-228
stepcpnyield 8-234

T
tbilldisc2yield 8-239
tbillprice 8-241
tbillrepo 8-243
tbillval01 8-245
tbillyield 8-247
tbillyield2disc 8-249
tenor 8-162
tfutbyprice 8-251
tfutbyyield 8-254
tfutimprepo 8-257

tfutpricebyrepo 8-259
toRateSpec (IRDataCurve) 8-263
toRateSpec (IRFunctionCurve) 8-265
Treasury bills

defined 3-7
Treasury bonds 3-7
Treasury notes 3-7

Z
zero-coupon bond

defined 3-12
quality of measurement 3-12

zeroprice 8-267
zeroyield 8-271

Index-3

	toc
	Getting Started
	Product Overview
	Introduction
	Key Features
	Expected Background

	Mortgage-Backed Securities
	What Are Mortgage-Backed Securities?
	Using Fixed-Rate Mortgage Pool Functions
	Introduction
	Inputs to Functions
	Generating Prepayment Vectors
	Mortgage Prepayments
	Risk Measurement
	Mortgage Pool Valuation
	Calculating OAS
	Calculating Effective Duration
	Calculating Market Price

	Computing Option-Adjusted Spread
	Prepayments with Fewer Than 360 Months Remaining
	Pools with Different Numbers of Coupons Remaining
	Summary of Prepayment Data Vector Representation

	Debt Instruments
	Agency Option-Adjusted Spreads
	Computing the Agency OAS for Bonds

	Treasury Bills Defined
	Computing Treasury Bill Price and Yield
	Introduction
	Treasury Bill Repurchase Agreements
	Treasury Bill Yields

	Using Zero-Coupon Bonds
	Introduction
	Measuring Zero-Coupon Bond Function Quality
	Pricing Treasury Notes
	Pricing Corporate Bonds

	Stepped-Coupon Bonds
	Introduction
	Cash Flows from Stepped-Coupon Bonds
	Price and Yield of Stepped-Coupon Bonds

	Term Structure Calculations
	Introduction
	Computing Spot and Forward Curves
	Computing Spreads
	Noise in Curve Computations

	Derivative Securities
	Interest Rate Swaps
	Swap Pricing Assumptions
	Assumptions on Floating-Rate Input
	Assumptions on Fixed-Rate Output

	Swap Pricing Example
	Portfolio Hedging

	Convertible Bond Valuation
	Bond Futures
	Supported Bond Futures
	Example Analysis of Bond Futures
	Calculating Bond Conversion Factors
	Calculating Implied Repo Rates to Find the CTD Bond
	Pricing Bond Futures Using the Term Implied Repo Rate

	Managing Interest-Rate Risk with Bond Futures

	Credit Derivatives
	Credit Default Swap (CDS)
	Bootstrapping a Default Probability Curve
	Finding the Breakeven Spread for a New CDS Contract
	Valuing an Existing CDS Contract
	Converting from Running to Upfront and Vice Versa
	Bootstrapping from Inverted Market Curves

	Credit Default Swap Option

	Interest-Rate Curve Objects
	Introduction to Interest-Rate Curve Objects
	Class Structure
	Supported Workflow Model Using Interest-Rate Curve Objects

	Creating Interest-Rate Curve Objects
	Creating an IRDataCurve Object
	Using the IRDataCurve Constructor with Dates and Data
	Example

	Using IRDataCurve bootstrap Method for Bootstrapping Based on Ma
	Example 1
	Example 2

	Creating an IRFunctionCurve Object
	Using a Function Handle to Fit an IRFunctionCurve Object
	Example

	Using the Nelson-Siegel Method to Fit an IRFunctionCurve Object
	Example

	Using the Svensson Method to Fit an IRFunctionCurve Object
	Example

	Using the Smoothing Spline Method to Fit an IRFunctionCurve Obje
	Example

	Using the fitFunction Method to Create a Custom Fitting Function
	Example

	Converting an IRDataCurve or IRFunctionCurve Object
	Introduction
	Using the toRateSpec Method
	Example

	Using Vector of Dates and Data Methods
	Example

	Function Reference
	Bond Futures
	Certificates of Deposit
	Convertible Bonds
	Credit Default Swaps
	Derivative Securities
	Interest-Rate Curve Objects
	Mortgage-Backed Securities
	Option-Adjusted Spread Computations
	Stepped-Coupon Bonds
	Treasury Bills
	Zero-Coupon Instruments

	Functions — Alphabetical List
	Class Reference
	@IRBootstrapOptions
	Hierarchy
	Constructor
	Public Read-Only Properties
	Methods

	@IRCurve
	Hierarchy
	Description
	Constructor
	Public Read-Only Properties
	Methods

	@IRDataCurve
	Hierarchy
	Description
	Constructor
	Public Read-Only Properties
	Methods

	@IRFitOptions
	Hierarchy
	Description
	Constructor
	Public Read-Only Properties
	Methods

	@IRFunctionCurve
	Hierarchy
	Description
	Constructor
	Public Read-Only Properties
	Methods

	Bibliography
	Fitting Interest-Rate Curve Functions
	Bootstrapping a Swap Curve
	Bond Futures
	Credit Derivatives

	Examples
	Agency Option Adjusted Spreads
	Treasury Bills
	Using Zero-Coupon Bonds
	Stepped-Coupon Bonds
	Pricing and Hedging
	Bond Futures
	Credit Default Swaps

	Glossary
	Index

	tables
	Treasury Bill Functions
	Cash Flows from Repurchase Agreement
	Eurodollar Data on Friday, October 11, 2002
	Calculated and Market Average Data of Swap Rates on Friday, Octo
	CDS Functions

